蚂蚁系统的分析与比较不同参数设置的蚁群系统和最大最小蚁群系统

Renu Jangra, Ramesh Kait
{"title":"蚂蚁系统的分析与比较不同参数设置的蚁群系统和最大最小蚁群系统","authors":"Renu Jangra, Ramesh Kait","doi":"10.1109/CIACT.2017.7977376","DOIUrl":null,"url":null,"abstract":"Ant colony optimization is a victorious technique to resolve complicated combinatorial optimized problems. Subsequent Ant System; the primary ACO algorithm, the tremendous number of algorithmic variations have been deployed that illustrate appreciably superior performance on a broad variety of optimized problems. In this paper, we present the basic modifications in Ant Colony System-ACS and Max-Min Ant System-MMAS with respect to Ant System-AS. Also, compare the result of these three algorithms based on different parameter adjustments.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Analysis and comparison among Ant System; Ant Colony System and Max-Min Ant System with different parameters setting\",\"authors\":\"Renu Jangra, Ramesh Kait\",\"doi\":\"10.1109/CIACT.2017.7977376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant colony optimization is a victorious technique to resolve complicated combinatorial optimized problems. Subsequent Ant System; the primary ACO algorithm, the tremendous number of algorithmic variations have been deployed that illustrate appreciably superior performance on a broad variety of optimized problems. In this paper, we present the basic modifications in Ant Colony System-ACS and Max-Min Ant System-MMAS with respect to Ant System-AS. Also, compare the result of these three algorithms based on different parameter adjustments.\",\"PeriodicalId\":218079,\"journal\":{\"name\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIACT.2017.7977376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

蚁群优化是解决复杂组合优化问题的一种有效方法。后续蚂蚁系统;作为主要的蚁群算法,已经部署了大量的算法变体,这些变体在各种优化问题上表现出明显的优越性能。在本文中,我们提出了蚁群系统- acs和最大最小蚂蚁系统- mmas相对于蚂蚁系统- as的基本修改。并比较了三种算法在不同参数调整下的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and comparison among Ant System; Ant Colony System and Max-Min Ant System with different parameters setting
Ant colony optimization is a victorious technique to resolve complicated combinatorial optimized problems. Subsequent Ant System; the primary ACO algorithm, the tremendous number of algorithmic variations have been deployed that illustrate appreciably superior performance on a broad variety of optimized problems. In this paper, we present the basic modifications in Ant Colony System-ACS and Max-Min Ant System-MMAS with respect to Ant System-AS. Also, compare the result of these three algorithms based on different parameter adjustments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信