气泡上升的热效应实验研究

K. K. Dhar
{"title":"气泡上升的热效应实验研究","authors":"K. K. Dhar","doi":"10.26782/jmcms.2022.03.00002","DOIUrl":null,"url":null,"abstract":"This paper presents the findings of an experimental study on the effect of temperature gradient on bubble rise velocity in water. At the bottom of the chamber holding water, a bubble (equivalent diameter, req 1 mm) is created and rises through it. At a height of 60 cm from the chamber’s bottom, a high-speed camera (1000 fps, Kodak, Model 1000 HRC) is mounted with a 90 mm Macro lens. It is connected to a computer. For image capture and processing, the commercial tools Sigma Scan Pro 5.0 and Adobe Photoshop are used. The chamber can be heated with infrared light, resulting in a constant temperature gradient of 1.10C/cm between 30 and 40 cm above the needle in the water. Bubble rise characteristics, such as bubble size and rise velocity, are determined both in the presence and absence of a temperature gradient. The current study clearly demonstrates that this gradient causes an additional increase in terminal rise velocity.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THERMAL EFFECT ON BUBBLE RISE – AN EXPERIMENTAL STUDY\",\"authors\":\"K. K. Dhar\",\"doi\":\"10.26782/jmcms.2022.03.00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the findings of an experimental study on the effect of temperature gradient on bubble rise velocity in water. At the bottom of the chamber holding water, a bubble (equivalent diameter, req 1 mm) is created and rises through it. At a height of 60 cm from the chamber’s bottom, a high-speed camera (1000 fps, Kodak, Model 1000 HRC) is mounted with a 90 mm Macro lens. It is connected to a computer. For image capture and processing, the commercial tools Sigma Scan Pro 5.0 and Adobe Photoshop are used. The chamber can be heated with infrared light, resulting in a constant temperature gradient of 1.10C/cm between 30 and 40 cm above the needle in the water. Bubble rise characteristics, such as bubble size and rise velocity, are determined both in the presence and absence of a temperature gradient. The current study clearly demonstrates that this gradient causes an additional increase in terminal rise velocity.\",\"PeriodicalId\":254600,\"journal\":{\"name\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26782/jmcms.2022.03.00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2022.03.00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了温度梯度对水中气泡上升速度影响的实验研究结果。在装水的腔室底部,产生一个气泡(直径相等,要求1毫米)并通过它上升。在距舱底60厘米的高度,安装了一个90毫米微距镜头的高速相机(1000 fps,柯达,Model 1000 HRC)。它与电脑相连。对于图像捕获和处理,使用商业工具Sigma Scan Pro 5.0和Adobe Photoshop。该腔室可以用红外光加热,从而在水中针头上方30至40厘米之间产生1.10C/cm的恒温梯度。气泡的上升特性,如气泡大小和上升速度,是在温度梯度存在和不存在的情况下确定的。目前的研究清楚地表明,这种梯度导致终端上升速度的额外增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THERMAL EFFECT ON BUBBLE RISE – AN EXPERIMENTAL STUDY
This paper presents the findings of an experimental study on the effect of temperature gradient on bubble rise velocity in water. At the bottom of the chamber holding water, a bubble (equivalent diameter, req 1 mm) is created and rises through it. At a height of 60 cm from the chamber’s bottom, a high-speed camera (1000 fps, Kodak, Model 1000 HRC) is mounted with a 90 mm Macro lens. It is connected to a computer. For image capture and processing, the commercial tools Sigma Scan Pro 5.0 and Adobe Photoshop are used. The chamber can be heated with infrared light, resulting in a constant temperature gradient of 1.10C/cm between 30 and 40 cm above the needle in the water. Bubble rise characteristics, such as bubble size and rise velocity, are determined both in the presence and absence of a temperature gradient. The current study clearly demonstrates that this gradient causes an additional increase in terminal rise velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信