利用BERT改进楔形文字识别

Gabriel Bernier-Colborne, Cyril Goutte, Serge Léger
{"title":"利用BERT改进楔形文字识别","authors":"Gabriel Bernier-Colborne, Cyril Goutte, Serge Léger","doi":"10.18653/v1/W19-1402","DOIUrl":null,"url":null,"abstract":"We describe the systems developed by the National Research Council Canada for the Cuneiform Language Identification (CLI) shared task at the 2019 VarDial evaluation campaign. We compare a state-of-the-art baseline relying on character n-grams and a traditional statistical classifier, a voting ensemble of classifiers, and a deep learning approach using a Transformer network. We describe how these systems were trained, and analyze the impact of some preprocessing and model estimation decisions. The deep neural network achieved 77% accuracy on the test data, which turned out to be the best performance at the CLI evaluation, establishing a new state-of-the-art for cuneiform language identification.","PeriodicalId":344344,"journal":{"name":"Proceedings of the Sixth Workshop on","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Improving Cuneiform Language Identification with BERT\",\"authors\":\"Gabriel Bernier-Colborne, Cyril Goutte, Serge Léger\",\"doi\":\"10.18653/v1/W19-1402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the systems developed by the National Research Council Canada for the Cuneiform Language Identification (CLI) shared task at the 2019 VarDial evaluation campaign. We compare a state-of-the-art baseline relying on character n-grams and a traditional statistical classifier, a voting ensemble of classifiers, and a deep learning approach using a Transformer network. We describe how these systems were trained, and analyze the impact of some preprocessing and model estimation decisions. The deep neural network achieved 77% accuracy on the test data, which turned out to be the best performance at the CLI evaluation, establishing a new state-of-the-art for cuneiform language identification.\",\"PeriodicalId\":344344,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-1402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-1402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们描述了加拿大国家研究委员会在2019年VarDial评估活动中为楔形文字识别(CLI)共享任务开发的系统。我们比较了基于字符n-图的最先进的基线和传统的统计分类器、分类器的投票集合和使用Transformer网络的深度学习方法。我们描述了这些系统是如何训练的,并分析了一些预处理和模型估计决策的影响。深度神经网络在测试数据上达到了77%的准确率,这在CLI评估中被证明是最好的表现,为楔形文字识别建立了新的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Cuneiform Language Identification with BERT
We describe the systems developed by the National Research Council Canada for the Cuneiform Language Identification (CLI) shared task at the 2019 VarDial evaluation campaign. We compare a state-of-the-art baseline relying on character n-grams and a traditional statistical classifier, a voting ensemble of classifiers, and a deep learning approach using a Transformer network. We describe how these systems were trained, and analyze the impact of some preprocessing and model estimation decisions. The deep neural network achieved 77% accuracy on the test data, which turned out to be the best performance at the CLI evaluation, establishing a new state-of-the-art for cuneiform language identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信