Shweta Agrawal, Sanjay Bhattacherjee, D. Phan, D. Stehlé, Shota Yamada
{"title":"有效的公共追踪和标准假设的撤销:扩展摘要","authors":"Shweta Agrawal, Sanjay Bhattacherjee, D. Phan, D. Stehlé, Shota Yamada","doi":"10.1145/3133956.3134041","DOIUrl":null,"url":null,"abstract":"We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Efficient Public Trace and Revoke from Standard Assumptions: Extended Abstract\",\"authors\":\"Shweta Agrawal, Sanjay Bhattacherjee, D. Phan, D. Stehlé, Shota Yamada\",\"doi\":\"10.1145/3133956.3134041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity.\",\"PeriodicalId\":191367,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3133956.3134041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Public Trace and Revoke from Standard Assumptions: Extended Abstract
We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity.