在N$^3$LO处用NRQCD校正Cornell模型

P. G. Ortega, V. Mateu, D. R. Entem, F. Fernández
{"title":"在N$^3$LO处用NRQCD校正Cornell模型","authors":"P. G. Ortega, V. Mateu, D. R. Entem, F. Fernández","doi":"10.22323/1.336.0121","DOIUrl":null,"url":null,"abstract":"The typical binding energy of heavy hadron spectroscopy makes the system accessible to perturbative calculations in terms of non-relativistic QCD. Within NRQCD the predictions of heavy quarkonium energy levels rely on the accurate description of the static QCD potential $V_{\\rm QCD}(r)$. \nHistorically, heavy quarkonium spectroscopy was studied using phenomenological approaches such as the Cornell model $V_{\\rm Cornell}=-\\kappa/r+\\sigma\\, r$, which assumes a short-distance dominant Coulomb potential plus a liner rising potential that emerges at long distances. Such model works reasonably well in describing the charmonium and bottomonium spectroscopy. However, even when there are physically-motivated arguments for the construction of the Cornell model, there is no conection a priori with QCD parameters. \nBased on a previous work on heavy meson spectroscopy, we calibrate the Cornell model with NRQCD predictions for the lowest lying bottomonium states at N$^3$LO, in which the bottom mass is varied within a wide range. We show that the Cornell model mass parameter can be identified with the low-scale short-distance MSR mass at the scale $R = 1$ GeV. This identification holds for any value of $\\alpha_s$ or the bottom mass. For moderate values of $r$, the NRQCD and Cornell static potentials are in head-on agreement when switching the pole mass to the MSR scheme, which allows to simultaneously cancel the renormalon and sum up large logarithms.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cornell Model calibration with NRQCD at N$^3$LO\",\"authors\":\"P. G. Ortega, V. Mateu, D. R. Entem, F. Fernández\",\"doi\":\"10.22323/1.336.0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The typical binding energy of heavy hadron spectroscopy makes the system accessible to perturbative calculations in terms of non-relativistic QCD. Within NRQCD the predictions of heavy quarkonium energy levels rely on the accurate description of the static QCD potential $V_{\\\\rm QCD}(r)$. \\nHistorically, heavy quarkonium spectroscopy was studied using phenomenological approaches such as the Cornell model $V_{\\\\rm Cornell}=-\\\\kappa/r+\\\\sigma\\\\, r$, which assumes a short-distance dominant Coulomb potential plus a liner rising potential that emerges at long distances. Such model works reasonably well in describing the charmonium and bottomonium spectroscopy. However, even when there are physically-motivated arguments for the construction of the Cornell model, there is no conection a priori with QCD parameters. \\nBased on a previous work on heavy meson spectroscopy, we calibrate the Cornell model with NRQCD predictions for the lowest lying bottomonium states at N$^3$LO, in which the bottom mass is varied within a wide range. We show that the Cornell model mass parameter can be identified with the low-scale short-distance MSR mass at the scale $R = 1$ GeV. This identification holds for any value of $\\\\alpha_s$ or the bottom mass. For moderate values of $r$, the NRQCD and Cornell static potentials are in head-on agreement when switching the pole mass to the MSR scheme, which allows to simultaneously cancel the renormalon and sum up large logarithms.\",\"PeriodicalId\":441384,\"journal\":{\"name\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.336.0121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重强子光谱的典型结合能使得该系统可以用非相对论性QCD进行微扰计算。在NRQCD中,重夸克能级的预测依赖于对静态QCD势的准确描述$V_{\rm QCD}(r)$。从历史上看,重夸克谱学是用康奈尔模型$V_{\rm Cornell}=-\kappa/r+\sigma\, r$等现象学方法研究的,该模型假设短距离的主导库仑势加上在长距离出现的直线上升势。该模型在描述查莫铵和底铵光谱时效果较好。然而,即使存在构建康奈尔模型的物理动机论据,也没有与QCD参数先验的联系。基于先前关于重介子光谱的研究,我们用NRQCD对N $^3$ LO最低底态的预测校准了Cornell模型,其中底质量在很大范围内变化。我们发现Cornell模型质量参数可以用$R = 1$ GeV尺度下的低尺度短距离MSR质量来识别。这种识别适用于$\alpha_s$或底部质量的任何值。对于$r$的中等值,当将极质量转换为MSR方案时,NRQCD和Cornell静态电位是正面一致的,这允许同时取消重整正规化并求和大对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cornell Model calibration with NRQCD at N$^3$LO
The typical binding energy of heavy hadron spectroscopy makes the system accessible to perturbative calculations in terms of non-relativistic QCD. Within NRQCD the predictions of heavy quarkonium energy levels rely on the accurate description of the static QCD potential $V_{\rm QCD}(r)$. Historically, heavy quarkonium spectroscopy was studied using phenomenological approaches such as the Cornell model $V_{\rm Cornell}=-\kappa/r+\sigma\, r$, which assumes a short-distance dominant Coulomb potential plus a liner rising potential that emerges at long distances. Such model works reasonably well in describing the charmonium and bottomonium spectroscopy. However, even when there are physically-motivated arguments for the construction of the Cornell model, there is no conection a priori with QCD parameters. Based on a previous work on heavy meson spectroscopy, we calibrate the Cornell model with NRQCD predictions for the lowest lying bottomonium states at N$^3$LO, in which the bottom mass is varied within a wide range. We show that the Cornell model mass parameter can be identified with the low-scale short-distance MSR mass at the scale $R = 1$ GeV. This identification holds for any value of $\alpha_s$ or the bottom mass. For moderate values of $r$, the NRQCD and Cornell static potentials are in head-on agreement when switching the pole mass to the MSR scheme, which allows to simultaneously cancel the renormalon and sum up large logarithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信