{"title":"基于视觉变换的人体网格恢复视频推理","authors":"Hanbyel Cho, Jaesung Ahn, Yooshin Cho, Junmo Kim","doi":"10.1109/FG57933.2023.10042731","DOIUrl":null,"url":null,"abstract":"Human Mesh Recovery (HMR) from an image is a challenging problem because of the inherent ambiguity of the task. Existing HMR methods utilized either temporal information or kinematic relationships to achieve higher accuracy, but there is no method using both. Hence, we propose “Video Inference for Human Mesh Recovery with Vision Transformer (HMR-ViT)” that can take into account both temporal and kinematic information. In HMR-ViT, a Temporal-kinematic Feature Image is constructed using feature vectors obtained from video frames by an image encoder. When generating the feature image, we use a Channel Rearranging Matrix (CRM) so that similar kinematic features could be located spatially close together. The feature image is then further encoded using Vision Transformer, and the SMPL pose and shape parameters are finally inferred using a regression network. Extensive evaluation on the 3DPW and Human3.6M datasets indicates that our method achieves a competitive performance in HMR.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Video Inference for Human Mesh Recovery with Vision Transformer\",\"authors\":\"Hanbyel Cho, Jaesung Ahn, Yooshin Cho, Junmo Kim\",\"doi\":\"10.1109/FG57933.2023.10042731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Mesh Recovery (HMR) from an image is a challenging problem because of the inherent ambiguity of the task. Existing HMR methods utilized either temporal information or kinematic relationships to achieve higher accuracy, but there is no method using both. Hence, we propose “Video Inference for Human Mesh Recovery with Vision Transformer (HMR-ViT)” that can take into account both temporal and kinematic information. In HMR-ViT, a Temporal-kinematic Feature Image is constructed using feature vectors obtained from video frames by an image encoder. When generating the feature image, we use a Channel Rearranging Matrix (CRM) so that similar kinematic features could be located spatially close together. The feature image is then further encoded using Vision Transformer, and the SMPL pose and shape parameters are finally inferred using a regression network. Extensive evaluation on the 3DPW and Human3.6M datasets indicates that our method achieves a competitive performance in HMR.\",\"PeriodicalId\":318766,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FG57933.2023.10042731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video Inference for Human Mesh Recovery with Vision Transformer
Human Mesh Recovery (HMR) from an image is a challenging problem because of the inherent ambiguity of the task. Existing HMR methods utilized either temporal information or kinematic relationships to achieve higher accuracy, but there is no method using both. Hence, we propose “Video Inference for Human Mesh Recovery with Vision Transformer (HMR-ViT)” that can take into account both temporal and kinematic information. In HMR-ViT, a Temporal-kinematic Feature Image is constructed using feature vectors obtained from video frames by an image encoder. When generating the feature image, we use a Channel Rearranging Matrix (CRM) so that similar kinematic features could be located spatially close together. The feature image is then further encoded using Vision Transformer, and the SMPL pose and shape parameters are finally inferred using a regression network. Extensive evaluation on the 3DPW and Human3.6M datasets indicates that our method achieves a competitive performance in HMR.