{"title":"一种用于商业建筑节能降耗的混合模型预测控制方案:仿真与实验","authors":"Hao Huang, Lei Chen, E. Hu","doi":"10.1109/ACC.2015.7170745","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid model predictive control (MPC) scheme for energy-saving control in commercial buildings. The proposed method combines a linear MPC with a neural network feedback linearisation (NNFL) method. The control model for the linear MPC is developed using a simplified physical model, while nonlinearities associated with the building system are handled by an affine recurrent neural network (ARNN) model through system feedback. The proposed MPC integrates several advanced air-conditioning control strategies, such as an economizer control, an optimal start-stop control, and a pre-cooling control. The developed MPC has been tested in the check-in hall of T-1 building, Adelaide Airport, through both simulation and field experiment. The result shows that the proposed control scheme can achieve a considerable amount of savings without violating occupants' thermal comfort.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A hybrid model predictive control scheme for energy and cost savings in commercial buildings: Simulation and experiment\",\"authors\":\"Hao Huang, Lei Chen, E. Hu\",\"doi\":\"10.1109/ACC.2015.7170745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid model predictive control (MPC) scheme for energy-saving control in commercial buildings. The proposed method combines a linear MPC with a neural network feedback linearisation (NNFL) method. The control model for the linear MPC is developed using a simplified physical model, while nonlinearities associated with the building system are handled by an affine recurrent neural network (ARNN) model through system feedback. The proposed MPC integrates several advanced air-conditioning control strategies, such as an economizer control, an optimal start-stop control, and a pre-cooling control. The developed MPC has been tested in the check-in hall of T-1 building, Adelaide Airport, through both simulation and field experiment. The result shows that the proposed control scheme can achieve a considerable amount of savings without violating occupants' thermal comfort.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7170745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid model predictive control scheme for energy and cost savings in commercial buildings: Simulation and experiment
This paper presents a hybrid model predictive control (MPC) scheme for energy-saving control in commercial buildings. The proposed method combines a linear MPC with a neural network feedback linearisation (NNFL) method. The control model for the linear MPC is developed using a simplified physical model, while nonlinearities associated with the building system are handled by an affine recurrent neural network (ARNN) model through system feedback. The proposed MPC integrates several advanced air-conditioning control strategies, such as an economizer control, an optimal start-stop control, and a pre-cooling control. The developed MPC has been tested in the check-in hall of T-1 building, Adelaide Airport, through both simulation and field experiment. The result shows that the proposed control scheme can achieve a considerable amount of savings without violating occupants' thermal comfort.