重用数据重组实现自适应不规则应用的高效SIMD并行化

Peng Jiang, Linchuan Chen, G. Agrawal
{"title":"重用数据重组实现自适应不规则应用的高效SIMD并行化","authors":"Peng Jiang, Linchuan Chen, G. Agrawal","doi":"10.1145/2925426.2926285","DOIUrl":null,"url":null,"abstract":"Applying SIMD parallelization to irregular applications with non-continuous and data-dependent memory accesses is challenging. While an application involving a static pattern of indirect accesses (across iterations) can be accelerated by data transformations, such techniques are no longer feasible if the indirect access patterns change over time. In this paper, we propose an indexing method that facilitates the reuse of data reorganization for efficient SIMD parallelization of dynamic irregular applications. This indexing approach is first applied on a class of vertex-centric graph algorithms where the set of active vertices varies over the execution -- the indexing method helps maintain the set of active edges. Next, we focus on unstructured particle interaction applications in which the edges change adaptively, and present an incremental indexing method. In our experimental evaluation, the speedups achieved by utilizing SIMD on graph applications range from 3.04× to 7.19×, and between 2.54× to 4.43× for molecular dynamics.","PeriodicalId":422112,"journal":{"name":"Proceedings of the 2016 International Conference on Supercomputing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Reusing Data Reorganization for Efficient SIMD Parallelization of Adaptive Irregular Applications\",\"authors\":\"Peng Jiang, Linchuan Chen, G. Agrawal\",\"doi\":\"10.1145/2925426.2926285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying SIMD parallelization to irregular applications with non-continuous and data-dependent memory accesses is challenging. While an application involving a static pattern of indirect accesses (across iterations) can be accelerated by data transformations, such techniques are no longer feasible if the indirect access patterns change over time. In this paper, we propose an indexing method that facilitates the reuse of data reorganization for efficient SIMD parallelization of dynamic irregular applications. This indexing approach is first applied on a class of vertex-centric graph algorithms where the set of active vertices varies over the execution -- the indexing method helps maintain the set of active edges. Next, we focus on unstructured particle interaction applications in which the edges change adaptively, and present an incremental indexing method. In our experimental evaluation, the speedups achieved by utilizing SIMD on graph applications range from 3.04× to 7.19×, and between 2.54× to 4.43× for molecular dynamics.\",\"PeriodicalId\":422112,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Supercomputing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2925426.2926285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2925426.2926285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

将SIMD并行化应用于具有非连续和数据依赖内存访问的不规则应用程序是具有挑战性的。虽然涉及间接访问(跨迭代)的静态模式的应用程序可以通过数据转换来加速,但是如果间接访问模式随着时间的推移而改变,这些技术就不再可行了。本文提出了一种便于数据重组重用的索引方法,以实现动态不规则应用的高效SIMD并行化。这种索引方法首先应用于一类以顶点为中心的图算法,其中活动顶点集在执行过程中发生变化——索引方法有助于维护活动边集。接下来,我们重点研究了边缘自适应变化的非结构化粒子相互作用应用,并提出了一种增量索引方法。在我们的实验评估中,利用SIMD在图形应用程序上实现的加速范围为3.04×至7.19×,在分子动力学应用程序上实现的加速范围为2.54×至4.43×。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reusing Data Reorganization for Efficient SIMD Parallelization of Adaptive Irregular Applications
Applying SIMD parallelization to irregular applications with non-continuous and data-dependent memory accesses is challenging. While an application involving a static pattern of indirect accesses (across iterations) can be accelerated by data transformations, such techniques are no longer feasible if the indirect access patterns change over time. In this paper, we propose an indexing method that facilitates the reuse of data reorganization for efficient SIMD parallelization of dynamic irregular applications. This indexing approach is first applied on a class of vertex-centric graph algorithms where the set of active vertices varies over the execution -- the indexing method helps maintain the set of active edges. Next, we focus on unstructured particle interaction applications in which the edges change adaptively, and present an incremental indexing method. In our experimental evaluation, the speedups achieved by utilizing SIMD on graph applications range from 3.04× to 7.19×, and between 2.54× to 4.43× for molecular dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信