基于深度卷积神经网络的皮肤诊断增强混合模型

D. Shoieb, S. Youssef
{"title":"基于深度卷积神经网络的皮肤诊断增强混合模型","authors":"D. Shoieb, S. Youssef","doi":"10.1109/CIBEC.2018.8641806","DOIUrl":null,"url":null,"abstract":"Melanoma is the deadliest form of skin cancer. Unfortunately, Skin cancer can’t be identified by visual examination. So, there is a call for an automated model which assists dermatologists in early diagnosis of skin cancer and help remote patient to save their life by remote diagnosis. This paper introduces an enhanced expert computer-aided model for skin diagnosis using deep learning. The proposed region of interest (ROI) segmentation is done by integrating both color and texture properties for the skin in both spatial and frequency domains. Then, the convolution neural network (CNN) is used for extracting all the possible discriminating features. Experiments have been conducted on various large datasets to demonstrate the efficiency of the proposed model. The experimental results show an outstanding performance in the terms of sensitivity, specificity and accuracy compared with others in literature.","PeriodicalId":407809,"journal":{"name":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Enhanced Hybrid Model for Skin Diagnosis Using Deep Convolution Neural Network\",\"authors\":\"D. Shoieb, S. Youssef\",\"doi\":\"10.1109/CIBEC.2018.8641806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma is the deadliest form of skin cancer. Unfortunately, Skin cancer can’t be identified by visual examination. So, there is a call for an automated model which assists dermatologists in early diagnosis of skin cancer and help remote patient to save their life by remote diagnosis. This paper introduces an enhanced expert computer-aided model for skin diagnosis using deep learning. The proposed region of interest (ROI) segmentation is done by integrating both color and texture properties for the skin in both spatial and frequency domains. Then, the convolution neural network (CNN) is used for extracting all the possible discriminating features. Experiments have been conducted on various large datasets to demonstrate the efficiency of the proposed model. The experimental results show an outstanding performance in the terms of sensitivity, specificity and accuracy compared with others in literature.\",\"PeriodicalId\":407809,\"journal\":{\"name\":\"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBEC.2018.8641806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2018.8641806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

黑色素瘤是最致命的皮肤癌。不幸的是,皮肤癌不能通过视觉检查来识别。因此,需要一种自动化模型来帮助皮肤科医生进行皮肤癌的早期诊断,并通过远程诊断帮助远程患者挽救生命。本文介绍了一种基于深度学习的增强型专家计算机辅助皮肤诊断模型。本文提出的感兴趣区域(ROI)分割是通过在空间域和频率域整合皮肤的颜色和纹理属性来实现的。然后,使用卷积神经网络(CNN)提取所有可能的判别特征。在各种大型数据集上进行了实验,以证明所提出模型的有效性。实验结果表明,与其他文献相比,该方法在灵敏度、特异性和准确性方面都有突出的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Hybrid Model for Skin Diagnosis Using Deep Convolution Neural Network
Melanoma is the deadliest form of skin cancer. Unfortunately, Skin cancer can’t be identified by visual examination. So, there is a call for an automated model which assists dermatologists in early diagnosis of skin cancer and help remote patient to save their life by remote diagnosis. This paper introduces an enhanced expert computer-aided model for skin diagnosis using deep learning. The proposed region of interest (ROI) segmentation is done by integrating both color and texture properties for the skin in both spatial and frequency domains. Then, the convolution neural network (CNN) is used for extracting all the possible discriminating features. Experiments have been conducted on various large datasets to demonstrate the efficiency of the proposed model. The experimental results show an outstanding performance in the terms of sensitivity, specificity and accuracy compared with others in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信