基于注意门网络的视网膜血管分割

Kaiqi Li, Zeyi Yao, Yiwen Luo, Xingqun Qi, Pengkun Liu, Zijian Wang
{"title":"基于注意门网络的视网膜血管分割","authors":"Kaiqi Li, Zeyi Yao, Yiwen Luo, Xingqun Qi, Pengkun Liu, Zijian Wang","doi":"10.1145/3429889.3429936","DOIUrl":null,"url":null,"abstract":"Automatic retinal vessel segmentation is a challenging problem in the clinical diagnosis of eye diseases. Accurate segmentation of retinal vessel can efficiently assist the physicians to make a more precise symptom detection. However, there are various shapes and sizes, complex backgrounds and noise in the retinal vessel images. To address these problems, in this paper, we design an attention gate network to model long-range dependencies and capture rich contextual information. Specifically, we adopt an attention gate module, which includes a spatial attention module to model spatial long-range contextual information. Moreover, to improve the contrast of original retinal fundus images, we employ green channel extraction and contrast limited adaptive histogram equalization as pre-processing steps. Experiments on the DRIVE and STARE show the proposed AGNET achieves the outstanding performance with 0.8247/0.8361 sensitivity, 0.9871/0.9899 specificity, 0.9764/0.9791 accuracy, and 0.9881/0.9928 AUC respectively.","PeriodicalId":315899,"journal":{"name":"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Retinal Blood Vessel Segmentation via Attention Gate Network\",\"authors\":\"Kaiqi Li, Zeyi Yao, Yiwen Luo, Xingqun Qi, Pengkun Liu, Zijian Wang\",\"doi\":\"10.1145/3429889.3429936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic retinal vessel segmentation is a challenging problem in the clinical diagnosis of eye diseases. Accurate segmentation of retinal vessel can efficiently assist the physicians to make a more precise symptom detection. However, there are various shapes and sizes, complex backgrounds and noise in the retinal vessel images. To address these problems, in this paper, we design an attention gate network to model long-range dependencies and capture rich contextual information. Specifically, we adopt an attention gate module, which includes a spatial attention module to model spatial long-range contextual information. Moreover, to improve the contrast of original retinal fundus images, we employ green channel extraction and contrast limited adaptive histogram equalization as pre-processing steps. Experiments on the DRIVE and STARE show the proposed AGNET achieves the outstanding performance with 0.8247/0.8361 sensitivity, 0.9871/0.9899 specificity, 0.9764/0.9791 accuracy, and 0.9881/0.9928 AUC respectively.\",\"PeriodicalId\":315899,\"journal\":{\"name\":\"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3429889.3429936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429889.3429936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视网膜血管自动分割是眼病临床诊断中的一个难点。准确的视网膜血管分割可以有效地帮助医生做出更精确的症状检测。然而,视网膜血管图像存在形状和大小不一、背景复杂和噪声等问题。为了解决这些问题,本文设计了一个注意力门网络来建模远程依赖关系并捕获丰富的上下文信息。具体来说,我们采用了一个注意门模块,其中包括一个空间注意模块来对空间远程上下文信息进行建模。此外,为了提高原始眼底图像的对比度,我们采用了绿色通道提取和对比度有限的自适应直方图均衡化作为预处理步骤。在DRIVE和STARE上的实验表明,该AGNET的灵敏度分别为0.8247/0.8361,特异度分别为0.9871/0.9899,准确度为0.9764/0.9791,AUC分别为0.9881/0.9928。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retinal Blood Vessel Segmentation via Attention Gate Network
Automatic retinal vessel segmentation is a challenging problem in the clinical diagnosis of eye diseases. Accurate segmentation of retinal vessel can efficiently assist the physicians to make a more precise symptom detection. However, there are various shapes and sizes, complex backgrounds and noise in the retinal vessel images. To address these problems, in this paper, we design an attention gate network to model long-range dependencies and capture rich contextual information. Specifically, we adopt an attention gate module, which includes a spatial attention module to model spatial long-range contextual information. Moreover, to improve the contrast of original retinal fundus images, we employ green channel extraction and contrast limited adaptive histogram equalization as pre-processing steps. Experiments on the DRIVE and STARE show the proposed AGNET achieves the outstanding performance with 0.8247/0.8361 sensitivity, 0.9871/0.9899 specificity, 0.9764/0.9791 accuracy, and 0.9881/0.9928 AUC respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信