基于粗糙集的空间流行病学数据分析相似性度量

Sharmila Banu Kather, B. Tripathy
{"title":"基于粗糙集的空间流行病学数据分析相似性度量","authors":"Sharmila Banu Kather, B. Tripathy","doi":"10.4018/IJRSDA.2016010107","DOIUrl":null,"url":null,"abstract":"Epidemiological studies are carried out to understand the pattern and transmission of disease instances. Some prominent dimensions considered for analysis are cohort studies, ecological studies, transmission modeling and prediction. 'Descriptive Epidemiology' is defined with respect to 'people, time and place'. Place geography plays a key role in the pattern of disease outcomes in both epidemic outbreaks and chronic cases. A lot of research has documented the significance of spatial features in Epidemiology and have produced health/disease maps of a particular geography. This work proposes to identify similarity between regions in such maps using Rough set based measures. Thus spatial auto-correlation of disease instances in a geographic region can be analysed further to prepare mitigation strategies.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Rough Set Based Similarity Measures for Data Analytics in Spatial Epidemiology\",\"authors\":\"Sharmila Banu Kather, B. Tripathy\",\"doi\":\"10.4018/IJRSDA.2016010107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epidemiological studies are carried out to understand the pattern and transmission of disease instances. Some prominent dimensions considered for analysis are cohort studies, ecological studies, transmission modeling and prediction. 'Descriptive Epidemiology' is defined with respect to 'people, time and place'. Place geography plays a key role in the pattern of disease outcomes in both epidemic outbreaks and chronic cases. A lot of research has documented the significance of spatial features in Epidemiology and have produced health/disease maps of a particular geography. This work proposes to identify similarity between regions in such maps using Rough set based measures. Thus spatial auto-correlation of disease instances in a geographic region can be analysed further to prepare mitigation strategies.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2016010107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2016010107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

开展了流行病学研究,以了解疾病的模式和传播。考虑分析的一些突出维度是队列研究、生态研究、传播建模和预测。“描述性流行病学”是根据“人、时间和地点”来定义的。地方地理在流行病暴发和慢性病例的疾病结果模式中都起着关键作用。许多研究证明了空间特征在流行病学中的重要性,并制作了特定地理区域的健康/疾病地图。这项工作提出使用基于粗糙集的度量来识别这些地图中区域之间的相似性。因此,可以进一步分析一个地理区域内疾病实例的空间自相关性,以制定缓解战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rough Set Based Similarity Measures for Data Analytics in Spatial Epidemiology
Epidemiological studies are carried out to understand the pattern and transmission of disease instances. Some prominent dimensions considered for analysis are cohort studies, ecological studies, transmission modeling and prediction. 'Descriptive Epidemiology' is defined with respect to 'people, time and place'. Place geography plays a key role in the pattern of disease outcomes in both epidemic outbreaks and chronic cases. A lot of research has documented the significance of spatial features in Epidemiology and have produced health/disease maps of a particular geography. This work proposes to identify similarity between regions in such maps using Rough set based measures. Thus spatial auto-correlation of disease instances in a geographic region can be analysed further to prepare mitigation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信