通过算法级错误检测使能超频

T. Marty, Tomofumi Yuki, Steven Derrien
{"title":"通过算法级错误检测使能超频","authors":"T. Marty, Tomofumi Yuki, Steven Derrien","doi":"10.1109/FPT.2018.00034","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a technique for improving the efficiency of hardware accelerators based on timing speculation (overclocking) and fault tolerance. We augment the accelerator with a lightweight error detection mechanism to protect against timing errors, enabling aggressive timing speculation. We demonstrate the validity of our approach for the convolution layers in convolutional neural networks. We present an implementation of a fault-tolerant convolution layer accelerator combined with the lightweight error detection. The error detection mechanism we have developed works at the algorithm-level, utilizing algebraic properties of the computation, allowing the full implementation to be realized using High-Level Synthesis tools. Our prototype on ZC706 demonstrated 68% - 77% higher throughput with negligible overhead.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Enabling Overclocking Through Algorithm-Level Error Detection\",\"authors\":\"T. Marty, Tomofumi Yuki, Steven Derrien\",\"doi\":\"10.1109/FPT.2018.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a technique for improving the efficiency of hardware accelerators based on timing speculation (overclocking) and fault tolerance. We augment the accelerator with a lightweight error detection mechanism to protect against timing errors, enabling aggressive timing speculation. We demonstrate the validity of our approach for the convolution layers in convolutional neural networks. We present an implementation of a fault-tolerant convolution layer accelerator combined with the lightweight error detection. The error detection mechanism we have developed works at the algorithm-level, utilizing algebraic properties of the computation, allowing the full implementation to be realized using High-Level Synthesis tools. Our prototype on ZC706 demonstrated 68% - 77% higher throughput with negligible overhead.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种基于时序推测(超频)和容错的技术来提高硬件加速器的效率。我们用轻量级的错误检测机制来增强加速器,以防止计时错误,从而实现积极的计时猜测。我们证明了我们的方法在卷积神经网络中的卷积层的有效性。我们提出了一种结合轻量级错误检测的容错卷积层加速器的实现。我们开发的错误检测机制在算法级工作,利用计算的代数性质,允许使用高级综合工具实现完整的实现。我们在ZC706上的原型显示,吞吐量提高了68% - 77%,开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Overclocking Through Algorithm-Level Error Detection
In this paper, we propose a technique for improving the efficiency of hardware accelerators based on timing speculation (overclocking) and fault tolerance. We augment the accelerator with a lightweight error detection mechanism to protect against timing errors, enabling aggressive timing speculation. We demonstrate the validity of our approach for the convolution layers in convolutional neural networks. We present an implementation of a fault-tolerant convolution layer accelerator combined with the lightweight error detection. The error detection mechanism we have developed works at the algorithm-level, utilizing algebraic properties of the computation, allowing the full implementation to be realized using High-Level Synthesis tools. Our prototype on ZC706 demonstrated 68% - 77% higher throughput with negligible overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信