基于神经网络的压电级自适应控制器设计

Dong Zhang, Chengjin Zhang, Zhen Qin, Qiang Wei, Suzhen Wang, Limin Quan
{"title":"基于神经网络的压电级自适应控制器设计","authors":"Dong Zhang, Chengjin Zhang, Zhen Qin, Qiang Wei, Suzhen Wang, Limin Quan","doi":"10.1109/ICAL.2012.6308225","DOIUrl":null,"url":null,"abstract":"Double sigmoid activation function is adopted to improve the BP neural networks to build the piezo-stage's on-line identification model. Then based on the on-line identification model, a neural networks model reference adaptive controller is designed to realize the piezo-stage's high accuracy tracking for micro/nanopositioning. Some experiment has been done to indicate the validity of the control scheme.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive controller design of piezo-stage base on neural networks\",\"authors\":\"Dong Zhang, Chengjin Zhang, Zhen Qin, Qiang Wei, Suzhen Wang, Limin Quan\",\"doi\":\"10.1109/ICAL.2012.6308225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Double sigmoid activation function is adopted to improve the BP neural networks to build the piezo-stage's on-line identification model. Then based on the on-line identification model, a neural networks model reference adaptive controller is designed to realize the piezo-stage's high accuracy tracking for micro/nanopositioning. Some experiment has been done to indicate the validity of the control scheme.\",\"PeriodicalId\":373152,\"journal\":{\"name\":\"2012 IEEE International Conference on Automation and Logistics\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Automation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAL.2012.6308225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用双s型激活函数对BP神经网络进行改进,建立压电级在线辨识模型。然后基于在线辨识模型,设计了神经网络模型参考自适应控制器,实现了压电工作台微纳定位的高精度跟踪。实验结果表明了该控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive controller design of piezo-stage base on neural networks
Double sigmoid activation function is adopted to improve the BP neural networks to build the piezo-stage's on-line identification model. Then based on the on-line identification model, a neural networks model reference adaptive controller is designed to realize the piezo-stage's high accuracy tracking for micro/nanopositioning. Some experiment has been done to indicate the validity of the control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信