使用基于svm的学习进行多目标排序的经验

L. Nguyen, Wai Gen Yee, Roger Liew, O. Frieder
{"title":"使用基于svm的学习进行多目标排序的经验","authors":"L. Nguyen, Wai Gen Yee, Roger Liew, O. Frieder","doi":"10.1145/1871437.1871763","DOIUrl":null,"url":null,"abstract":"We describe our experiences in applying learning-to-rank techniques to improving the quality of search results of an online hotel reservation system. The search result quality factors we use are average booking position and distribution of margin in top-ranked results. (We expect that total revenue will increase with these factors.) Our application of the SVMRank technique improves booking position by up to 25% and margin distribution by up to 14%.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experiences with using SVM-based learning for multi-objective ranking\",\"authors\":\"L. Nguyen, Wai Gen Yee, Roger Liew, O. Frieder\",\"doi\":\"10.1145/1871437.1871763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our experiences in applying learning-to-rank techniques to improving the quality of search results of an online hotel reservation system. The search result quality factors we use are average booking position and distribution of margin in top-ranked results. (We expect that total revenue will increase with these factors.) Our application of the SVMRank technique improves booking position by up to 25% and margin distribution by up to 14%.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了我们应用学习排序技术来提高在线酒店预订系统的搜索结果质量的经验。我们使用的搜索结果质量因素是平均预订位置和排名靠前的搜索结果的利润分布。(我们预计总收益将随着这些因素而增加。)我们对SVMRank技术的应用使预订头寸提高了25%,利润分配提高了14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiences with using SVM-based learning for multi-objective ranking
We describe our experiences in applying learning-to-rank techniques to improving the quality of search results of an online hotel reservation system. The search result quality factors we use are average booking position and distribution of margin in top-ranked results. (We expect that total revenue will increase with these factors.) Our application of the SVMRank technique improves booking position by up to 25% and margin distribution by up to 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信