Putu Dedy, Wiratama Darmawan, Gede Aditra Pradnyana, Ida Bagus, Nyoman Pascima
{"title":"Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram","authors":"Putu Dedy, Wiratama Darmawan, Gede Aditra Pradnyana, Ida Bagus, Nyoman Pascima","doi":"10.31598/sintechjournal.v6i1.1245","DOIUrl":null,"url":null,"abstract":"Social media is an online media that users use to interact with each other by expressing themselves by giving comments, and one example is Instagram. All the collected comments will form a public opinion. This opinion can be used with sentiment analysis to become information. The method commonly used to carry out sentiment analysis is classification using machine learning. One of the machine learning that is often used is the Support Vector Machine (SVM). However, on non-linear problems such as sentiment analysis, SVM requires the kernel to map vectors into high-dimensional spaces to solve non-linear problems. The problem faced in using the kernel is to choose the optimal parameters for the classification model to produce a good classification model. This study proposes a new approach to obtain optimal parameters for SVM using Genetic Algorithm (GA). This study designed an SVM-GA classification model from the data collection, processing, classification, and evaluation stages. The results showed that the best accuracy produced with parameters optimized with the genetic algorithm was 81.6%, or an increase of 2.4% from the SVM sentiment analysis method without GA optimization.","PeriodicalId":302091,"journal":{"name":"SINTECH (Science and Information Technology) Journal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SINTECH (Science and Information Technology) Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31598/sintechjournal.v6i1.1245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体是一种在线媒体,用户通过发表评论来表达自己,与他人进行互动,Instagram就是一个例子。所有收集到的评论将形成一个公众意见。这种意见可以与情感分析一起使用,成为信息。通常用于进行情感分析的方法是使用机器学习进行分类。常用的机器学习方法之一是支持向量机(SVM)。然而,在情感分析等非线性问题上,支持向量机需要核函数将向量映射到高维空间来解决非线性问题。使用核函数所面临的问题是如何为分类模型选择最优参数,从而得到一个好的分类模型。提出了一种利用遗传算法求解支持向量机最优参数的新方法。本研究从数据收集、处理、分类、评价四个阶段设计了SVM-GA分类模型。结果表明,采用遗传算法优化参数得到的最佳准确率为81.6%,比未采用GA优化的SVM情感分析方法提高了2.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram
Social media is an online media that users use to interact with each other by expressing themselves by giving comments, and one example is Instagram. All the collected comments will form a public opinion. This opinion can be used with sentiment analysis to become information. The method commonly used to carry out sentiment analysis is classification using machine learning. One of the machine learning that is often used is the Support Vector Machine (SVM). However, on non-linear problems such as sentiment analysis, SVM requires the kernel to map vectors into high-dimensional spaces to solve non-linear problems. The problem faced in using the kernel is to choose the optimal parameters for the classification model to produce a good classification model. This study proposes a new approach to obtain optimal parameters for SVM using Genetic Algorithm (GA). This study designed an SVM-GA classification model from the data collection, processing, classification, and evaluation stages. The results showed that the best accuracy produced with parameters optimized with the genetic algorithm was 81.6%, or an increase of 2.4% from the SVM sentiment analysis method without GA optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信