时间序列基序发现技术在心电信号分类中的应用综述:利用时间序列基序发现技术对心电信号进行分类

E. Ramanujam, S. Padmavathi
{"title":"时间序列基序发现技术在心电信号分类中的应用综述:利用时间序列基序发现技术对心电信号进行分类","authors":"E. Ramanujam, S. Padmavathi","doi":"10.4018/ijaiml.2019070103","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease diagnosis from an ECG signal plays an important and significant role in the health care system. Recently, numerous researchers have developed an automatic time series-based multi-step diagnosis system for the fast and accurate diagnosis of ECG abnormalities. The multi-step procedure involves ECG signal acquisition, signal pre-processing, feature extraction, and classification. Among which, the feature extraction plays a vital role in the field of accurate diagnosis. The features may be different types such as statistical, morphological, wavelet or any other signal-based approach. This article discusses various time series motif-based feature extraction techniques with respect to a different dimension of ECG signal.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Review on Time Series Motif Discovery Techniques an Application to ECG Signal Classification: ECG Signal Classification Using Time Series Motif Discovery Techniques\",\"authors\":\"E. Ramanujam, S. Padmavathi\",\"doi\":\"10.4018/ijaiml.2019070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular disease diagnosis from an ECG signal plays an important and significant role in the health care system. Recently, numerous researchers have developed an automatic time series-based multi-step diagnosis system for the fast and accurate diagnosis of ECG abnormalities. The multi-step procedure involves ECG signal acquisition, signal pre-processing, feature extraction, and classification. Among which, the feature extraction plays a vital role in the field of accurate diagnosis. The features may be different types such as statistical, morphological, wavelet or any other signal-based approach. This article discusses various time series motif-based feature extraction techniques with respect to a different dimension of ECG signal.\",\"PeriodicalId\":217541,\"journal\":{\"name\":\"Int. J. Artif. Intell. Mach. Learn.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaiml.2019070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.2019070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

心电信号对心血管疾病的诊断在医疗保健系统中具有重要意义。近年来,许多研究者开发了一种基于时间序列的自动多步诊断系统,用于快速准确地诊断心电图异常。多步骤的过程包括心电信号采集,信号预处理,特征提取和分类。其中,特征提取在准确诊断领域起着至关重要的作用。特征可以是不同的类型,如统计、形态学、小波或任何其他基于信号的方法。本文针对不同的心电信号维度,讨论了各种基于时间序列基元的特征提取技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Time Series Motif Discovery Techniques an Application to ECG Signal Classification: ECG Signal Classification Using Time Series Motif Discovery Techniques
Cardiovascular disease diagnosis from an ECG signal plays an important and significant role in the health care system. Recently, numerous researchers have developed an automatic time series-based multi-step diagnosis system for the fast and accurate diagnosis of ECG abnormalities. The multi-step procedure involves ECG signal acquisition, signal pre-processing, feature extraction, and classification. Among which, the feature extraction plays a vital role in the field of accurate diagnosis. The features may be different types such as statistical, morphological, wavelet or any other signal-based approach. This article discusses various time series motif-based feature extraction techniques with respect to a different dimension of ECG signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信