群的单模循环

R. Austing
{"title":"群的单模循环","authors":"R. Austing","doi":"10.6028/JRES.069B.031","DOIUrl":null,"url":null,"abstract":"A me thod to determine a basis of the group of rational integral sy mmetri c posi ti ve definite uni· modular IlXII c irculants for any II. is presented . Th is method uses tllP co rrespondence between unin.vdular eirculants and units of the algebraic number field R(D, where ~ is a primitive nth root of unity. Know n resu lt s are used to obta in gene rato rs of ce rtain ape riodic subgroups of the abe li an, finitely generated gro up of un it s in RU;l. The co rres ponde nce, then , ~) ruduces the desired bas is eJements. The number of bas is elements for each II is proved to be r ~J + 1o-,,(n), where o-o(n) is the numbe)\" uf posi ti ve diviso rs of n . In addition, an upper bound for t~1e number of congruence c lasses of these circulant s is obta ined , where co ngrue nce is re lative to rationa l symmetri c unimodular Ilxn circulant s.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1965-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Groups of unimodular circulants\",\"authors\":\"R. Austing\",\"doi\":\"10.6028/JRES.069B.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A me thod to determine a basis of the group of rational integral sy mmetri c posi ti ve definite uni· modular IlXII c irculants for any II. is presented . Th is method uses tllP co rrespondence between unin.vdular eirculants and units of the algebraic number field R(D, where ~ is a primitive nth root of unity. Know n resu lt s are used to obta in gene rato rs of ce rtain ape riodic subgroups of the abe li an, finitely generated gro up of un it s in RU;l. The co rres ponde nce, then , ~) ruduces the desired bas is eJements. The number of bas is elements for each II is proved to be r ~J + 1o-,,(n), where o-o(n) is the numbe)\\\" uf posi ti ve diviso rs of n . In addition, an upper bound for t~1e number of congruence c lasses of these circulant s is obta ined , where co ngrue nce is re lative to rationa l symmetri c unimodular Ilxn circulant s.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.069B.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.069B.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一种确定任意II的有理积分系统对称正定单模ilxic循环群基的方法。呈现。该方法利用单元间的tlp对应关系。代数数域R(D)的泛循环和单位,其中~是单位的原始n次根。利用已知的结果得到了该类人猿的某些类人猿周期性亚群的基因比例,有限地生成了该类人猿在RU中的生长;然后,该代码将生成所需的数据库元素。证明了每个i的基本元素数为r ~J + 10 -, (n),其中o-o(n)为n的正整除数。此外,还得到了这些循环s的同余c类的个数的上界,其中同余c类是相对于非对称幺模循环s的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups of unimodular circulants
A me thod to determine a basis of the group of rational integral sy mmetri c posi ti ve definite uni· modular IlXII c irculants for any II. is presented . Th is method uses tllP co rrespondence between unin.vdular eirculants and units of the algebraic number field R(D, where ~ is a primitive nth root of unity. Know n resu lt s are used to obta in gene rato rs of ce rtain ape riodic subgroups of the abe li an, finitely generated gro up of un it s in RU;l. The co rres ponde nce, then , ~) ruduces the desired bas is eJements. The number of bas is elements for each II is proved to be r ~J + 1o-,,(n), where o-o(n) is the numbe)" uf posi ti ve diviso rs of n . In addition, an upper bound for t~1e number of congruence c lasses of these circulant s is obta ined , where co ngrue nce is re lative to rationa l symmetri c unimodular Ilxn circulant s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信