基于哈达玛矩阵的几种MIMO编码调制

A. Kreshchuk, V. Potapov
{"title":"基于哈达玛矩阵的几种MIMO编码调制","authors":"A. Kreshchuk, V. Potapov","doi":"10.1109/RED.2012.6338402","DOIUrl":null,"url":null,"abstract":"In this paper we consider the coded modulation for Multiple Input Multiple Output (MIMO) channels described earlier in [1]. We study the Permutation Free (PF) and Permutation and Repetition Free (PRF) codes and their cardinality. We propose a new lower bound on PF and PRF code cardinality. We compare it to existing codes cardinality and to the existing upper bound. Then we study the error correction efficiency of these codes with computer simulation. The results of the simulation show that error correction efficiency increases with the length of the PF or PRF code.","PeriodicalId":403644,"journal":{"name":"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some MIMO coded modulations based on hadamard matrices\",\"authors\":\"A. Kreshchuk, V. Potapov\",\"doi\":\"10.1109/RED.2012.6338402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the coded modulation for Multiple Input Multiple Output (MIMO) channels described earlier in [1]. We study the Permutation Free (PF) and Permutation and Repetition Free (PRF) codes and their cardinality. We propose a new lower bound on PF and PRF code cardinality. We compare it to existing codes cardinality and to the existing upper bound. Then we study the error correction efficiency of these codes with computer simulation. The results of the simulation show that error correction efficiency increases with the length of the PF or PRF code.\",\"PeriodicalId\":403644,\"journal\":{\"name\":\"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED.2012.6338402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED.2012.6338402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了先前在[1]中描述的多输入多输出(MIMO)信道的编码调制。研究了无置换码(PF)和无置换重复码(PRF)及其基数性。我们提出了一个新的PF和PRF码基数的下界。我们将其与现有的码基数和现有的上界进行比较。然后通过计算机仿真研究了这些码的纠错效率。仿真结果表明,纠错效率随着PF码或PRF码长度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some MIMO coded modulations based on hadamard matrices
In this paper we consider the coded modulation for Multiple Input Multiple Output (MIMO) channels described earlier in [1]. We study the Permutation Free (PF) and Permutation and Repetition Free (PRF) codes and their cardinality. We propose a new lower bound on PF and PRF code cardinality. We compare it to existing codes cardinality and to the existing upper bound. Then we study the error correction efficiency of these codes with computer simulation. The results of the simulation show that error correction efficiency increases with the length of the PF or PRF code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信