{"title":"流直径的参数化复杂度与连通性问题","authors":"Jelle J. Oostveen, E. J. V. Leeuwen","doi":"10.48550/arXiv.2207.04872","DOIUrl":null,"url":null,"abstract":"We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \\log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\\Omega(n \\log n)$ bits of memory lower bounds. We also prove a much stronger $\\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\\text{poly}(k)$ passes and only $O(k \\log n)$ bits of memory.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized Complexity of Streaming Diameter and Connectivity Problems\",\"authors\":\"Jelle J. Oostveen, E. J. V. Leeuwen\",\"doi\":\"10.48550/arXiv.2207.04872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\\\\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \\\\log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\\\\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\\\\Omega(n \\\\log n)$ bits of memory lower bounds. We also prove a much stronger $\\\\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\\\\text{poly}(k)$ passes and only $O(k \\\\log n)$ bits of memory.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.04872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.04872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameterized Complexity of Streaming Diameter and Connectivity Problems
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\Omega(n \log n)$ bits of memory lower bounds. We also prove a much stronger $\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\text{poly}(k)$ passes and only $O(k \log n)$ bits of memory.