流直径的参数化复杂度与连通性问题

Jelle J. Oostveen, E. J. V. Leeuwen
{"title":"流直径的参数化复杂度与连通性问题","authors":"Jelle J. Oostveen, E. J. V. Leeuwen","doi":"10.48550/arXiv.2207.04872","DOIUrl":null,"url":null,"abstract":"We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \\log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\\Omega(n \\log n)$ bits of memory lower bounds. We also prove a much stronger $\\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\\text{poly}(k)$ passes and only $O(k \\log n)$ bits of memory.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized Complexity of Streaming Diameter and Connectivity Problems\",\"authors\":\"Jelle J. Oostveen, E. J. V. Leeuwen\",\"doi\":\"10.48550/arXiv.2207.04872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\\\\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \\\\log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\\\\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\\\\Omega(n \\\\log n)$ bits of memory lower bounds. We also prove a much stronger $\\\\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\\\\text{poly}(k)$ passes and only $O(k \\\\log n)$ bits of memory.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.04872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.04872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对流范式中直径和连通性的参数化复杂性进行了研究。在积极的一面,我们表明,知道一个大小为$k$的顶点覆盖允许邻接表(AL)流模型中的算法,其传递次数是恒定的,对于任何固定的$k$,内存为$O(\log n)$。这些算法的基础是在$O(k)$通道和$O(k \log n)$内存位中执行宽度优先搜索的方法。在消极的一端,我们展示了许多其他参数导致AL模型中的下界,其中对于任何$p$ -pass算法,即使对于恒定的参数值,也需要$\Omega(n/p)$位的内存。特别是,对于大多数$H$,这适用于具有恒定大小的已知调制器(删除集)的图,该图没有与固定图同构的诱导子图$H$。对于某些情况,我们还可以显示一次通过$\Omega(n \log n)$位的内存下界。我们还证明了二部图上直径的一个更强的$\Omega(n^2/p)$下界。最后,利用我们对流参数化图探索算法的见解,我们展示了一种新的流核化算法,用于计算大小为$k$的顶点覆盖。这将产生一个包含$2k$个顶点(带有$O(k^2)$条边)的内核,在$\text{poly}(k)$通道中作为流生成,并且仅占用$O(k \log n)$位内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized Complexity of Streaming Diameter and Connectivity Problems
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\Omega(n \log n)$ bits of memory lower bounds. We also prove a much stronger $\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\text{poly}(k)$ passes and only $O(k \log n)$ bits of memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信