在rootbeer GPU编译器中加载煤烟类

Philip C. Pratt-Szeliga, Marc-André Laverdière, E. Merlo, James W. Fawcett, Roy D. Welch
{"title":"在rootbeer GPU编译器中加载煤烟类","authors":"Philip C. Pratt-Szeliga, Marc-André Laverdière, E. Merlo, James W. Fawcett, Roy D. Welch","doi":"10.1145/2487568.2487573","DOIUrl":null,"url":null,"abstract":"One of the first activities of the Soot program analysis framework is to load the classes for analysis. With the current class loader, more classes are loaded than necessary. The overhead in memory of these classes can make whole-program analysis of large binaries infeasible on systems with limited memory. This paper describes new algorithms and data structures to efficiently load Java Bytecode classes for whole program analysis in Soot. Our method uses a modified version of Rapid Type Analysis (RTA) to determine what classes, methods and fields would be reachable during program execution. This enables us to load significantly less information in memory to enable program analyses. We implemented our approach for loading Java bytecode in the Soot-based Rootbeer compiler. The new class loader loaded a Scene that had 58% to 64% less classes, representing memory savings of 44% to 82%.","PeriodicalId":198433,"journal":{"name":"State Of the Art in Java Program Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soot class loading in the rootbeer GPU compiler\",\"authors\":\"Philip C. Pratt-Szeliga, Marc-André Laverdière, E. Merlo, James W. Fawcett, Roy D. Welch\",\"doi\":\"10.1145/2487568.2487573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the first activities of the Soot program analysis framework is to load the classes for analysis. With the current class loader, more classes are loaded than necessary. The overhead in memory of these classes can make whole-program analysis of large binaries infeasible on systems with limited memory. This paper describes new algorithms and data structures to efficiently load Java Bytecode classes for whole program analysis in Soot. Our method uses a modified version of Rapid Type Analysis (RTA) to determine what classes, methods and fields would be reachable during program execution. This enables us to load significantly less information in memory to enable program analyses. We implemented our approach for loading Java bytecode in the Soot-based Rootbeer compiler. The new class loader loaded a Scene that had 58% to 64% less classes, representing memory savings of 44% to 82%.\",\"PeriodicalId\":198433,\"journal\":{\"name\":\"State Of the Art in Java Program Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"State Of the Art in Java Program Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487568.2487573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"State Of the Art in Java Program Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487568.2487573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Soot程序分析框架的第一个活动之一是加载用于分析的类。使用当前的类装入器,装入的类比需要的多。这些类的内存开销使得在内存有限的系统上无法对大型二进制文件进行整体程序分析。本文描述了在Soot中高效加载Java字节码类以进行全程序分析的新算法和数据结构。我们的方法使用快速类型分析(RTA)的修改版本来确定在程序执行期间可以访问哪些类、方法和字段。这使我们能够在内存中加载更少的信息来支持程序分析。我们在基于烟灰的Rootbeer编译器中实现了加载Java字节码的方法。新的类加载器加载的场景类减少了58%到64%,内存节省了44%到82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soot class loading in the rootbeer GPU compiler
One of the first activities of the Soot program analysis framework is to load the classes for analysis. With the current class loader, more classes are loaded than necessary. The overhead in memory of these classes can make whole-program analysis of large binaries infeasible on systems with limited memory. This paper describes new algorithms and data structures to efficiently load Java Bytecode classes for whole program analysis in Soot. Our method uses a modified version of Rapid Type Analysis (RTA) to determine what classes, methods and fields would be reachable during program execution. This enables us to load significantly less information in memory to enable program analyses. We implemented our approach for loading Java bytecode in the Soot-based Rootbeer compiler. The new class loader loaded a Scene that had 58% to 64% less classes, representing memory savings of 44% to 82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信