{"title":"虚拟拓扑上并行路由的多图抽象","authors":"Ahmet Soran, M. Yuksel, M. H. Gunes","doi":"10.1109/INFCOMW.2017.8116496","DOIUrl":null,"url":null,"abstract":"High throughput data transfers across the Internet has become a challenge with deployment of data centers and cloud platforms. In this paper, we propose to utilize the cores of a router to build multiple abstractions of the underlying topology to parallelize end-to-end (e2e) streams for bulk data transfers. By abstracting a different graph for each core, we steer each core to calculate a different e2e path in parallel. The e2e transfers can use the shortest paths obtained from each subgraph to increase the total throughput over the underlying network. Even though calculating shortest paths is well optimized in legacy routing protocols (e.g., OSPF), finding optimal set of subgraphs to generate non-overlapping and effective multiple paths is a challenging problem. To this end, we analyze centrality metrics to eliminate potentially highest loaded routers or edges in the topology without coordination and eliminate them from the subgraphs. We evaluate the heuristics in terms of aggregate throughput and robustness against failures.","PeriodicalId":306731,"journal":{"name":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple graph abstractions for parallel routing over virtual topologies\",\"authors\":\"Ahmet Soran, M. Yuksel, M. H. Gunes\",\"doi\":\"10.1109/INFCOMW.2017.8116496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High throughput data transfers across the Internet has become a challenge with deployment of data centers and cloud platforms. In this paper, we propose to utilize the cores of a router to build multiple abstractions of the underlying topology to parallelize end-to-end (e2e) streams for bulk data transfers. By abstracting a different graph for each core, we steer each core to calculate a different e2e path in parallel. The e2e transfers can use the shortest paths obtained from each subgraph to increase the total throughput over the underlying network. Even though calculating shortest paths is well optimized in legacy routing protocols (e.g., OSPF), finding optimal set of subgraphs to generate non-overlapping and effective multiple paths is a challenging problem. To this end, we analyze centrality metrics to eliminate potentially highest loaded routers or edges in the topology without coordination and eliminate them from the subgraphs. We evaluate the heuristics in terms of aggregate throughput and robustness against failures.\",\"PeriodicalId\":306731,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2017.8116496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2017.8116496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple graph abstractions for parallel routing over virtual topologies
High throughput data transfers across the Internet has become a challenge with deployment of data centers and cloud platforms. In this paper, we propose to utilize the cores of a router to build multiple abstractions of the underlying topology to parallelize end-to-end (e2e) streams for bulk data transfers. By abstracting a different graph for each core, we steer each core to calculate a different e2e path in parallel. The e2e transfers can use the shortest paths obtained from each subgraph to increase the total throughput over the underlying network. Even though calculating shortest paths is well optimized in legacy routing protocols (e.g., OSPF), finding optimal set of subgraphs to generate non-overlapping and effective multiple paths is a challenging problem. To this end, we analyze centrality metrics to eliminate potentially highest loaded routers or edges in the topology without coordination and eliminate them from the subgraphs. We evaluate the heuristics in terms of aggregate throughput and robustness against failures.