均值回归跳跃扩散过程:保持固定长期均值的漂移调整

Mirela Predescu, S. Wilkens
{"title":"均值回归跳跃扩散过程:保持固定长期均值的漂移调整","authors":"Mirela Predescu, S. Wilkens","doi":"10.2139/ssrn.1925110","DOIUrl":null,"url":null,"abstract":"This note addresses the properties of mean-reverting stochastic processes of the Black-Karasinski type with additional stochastic jumps. For these processes, which are well suited for many financial applications such as the modelling of commodity prices and credit spreads, one would usually like to ensure a fixed long-term mean around which the process paths evolve. This paper shows the impact of jumps on the long-term asymptotic behaviour of the Black-Karasinski process and proposes a drift adjustment that ensures the convergence of the process expectation to a fixed long-term mean.","PeriodicalId":431629,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mean-Reverting Jump Diffusion Processes: Drift Adjustment to Preserve a Fixed Long-Term Mean\",\"authors\":\"Mirela Predescu, S. Wilkens\",\"doi\":\"10.2139/ssrn.1925110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note addresses the properties of mean-reverting stochastic processes of the Black-Karasinski type with additional stochastic jumps. For these processes, which are well suited for many financial applications such as the modelling of commodity prices and credit spreads, one would usually like to ensure a fixed long-term mean around which the process paths evolve. This paper shows the impact of jumps on the long-term asymptotic behaviour of the Black-Karasinski process and proposes a drift adjustment that ensures the convergence of the process expectation to a fixed long-term mean.\",\"PeriodicalId\":431629,\"journal\":{\"name\":\"Econometrics: Applied Econometric Modeling in Financial Economics eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometric Modeling in Financial Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1925110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1925110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了具有附加随机跳变的Black-Karasinski型均值回归随机过程的性质。对于这些过程,它们非常适合许多金融应用,例如商品价格和信贷息差的建模,人们通常希望确保一个固定的长期均值,使过程路径围绕这个均值发展。本文展示了跳跃对Black-Karasinski过程的长期渐近行为的影响,并提出了一种保证过程期望收敛到固定长期均值的漂移调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean-Reverting Jump Diffusion Processes: Drift Adjustment to Preserve a Fixed Long-Term Mean
This note addresses the properties of mean-reverting stochastic processes of the Black-Karasinski type with additional stochastic jumps. For these processes, which are well suited for many financial applications such as the modelling of commodity prices and credit spreads, one would usually like to ensure a fixed long-term mean around which the process paths evolve. This paper shows the impact of jumps on the long-term asymptotic behaviour of the Black-Karasinski process and proposes a drift adjustment that ensures the convergence of the process expectation to a fixed long-term mean.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信