基流不确定性对过渡河道流动的影响

Dhanushki Hewawaduge, A. Zare
{"title":"基流不确定性对过渡河道流动的影响","authors":"Dhanushki Hewawaduge, A. Zare","doi":"10.23919/ACC53348.2022.9867704","DOIUrl":null,"url":null,"abstract":"We study the effect of white-in-time additive stochastic base flow perturbations on the mean-square properties of the linearized Navier-Stokes equations. Such perturbations enter the linearized dynamics as multiplicative sources of uncertainty. We adopt an input-output approach to analyze the mean-square stability and frequency response of the flow subject to additive and multiplicative uncertainty. For transitional channel flows, we uncover the Reynolds number scaling of critical base flow variances and identify length scales that are most affected by base flow uncertainty. For small-amplitude perturbations, we adopt a perturbation analysis to efficiently compute the variance amplification of velocity fluctuations around the uncertain base state. Our results demonstrate the robust amplification of streamwise elongated flow structures in the presence of base flow uncertainty and that the wall-normal shape of base flow modulations can influence the amplification of various length scales.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of base flow uncertainty on transitional channel flows\",\"authors\":\"Dhanushki Hewawaduge, A. Zare\",\"doi\":\"10.23919/ACC53348.2022.9867704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the effect of white-in-time additive stochastic base flow perturbations on the mean-square properties of the linearized Navier-Stokes equations. Such perturbations enter the linearized dynamics as multiplicative sources of uncertainty. We adopt an input-output approach to analyze the mean-square stability and frequency response of the flow subject to additive and multiplicative uncertainty. For transitional channel flows, we uncover the Reynolds number scaling of critical base flow variances and identify length scales that are most affected by base flow uncertainty. For small-amplitude perturbations, we adopt a perturbation analysis to efficiently compute the variance amplification of velocity fluctuations around the uncertain base state. Our results demonstrate the robust amplification of streamwise elongated flow structures in the presence of base flow uncertainty and that the wall-normal shape of base flow modulations can influence the amplification of various length scales.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了白时加性随机基流扰动对线性化Navier-Stokes方程均方性质的影响。这种扰动作为不确定性的倍增源进入线性化动力学。我们采用输入-输出的方法来分析加性和乘性不确定性下流动的均方稳定性和频率响应。对于过渡通道流动,我们揭示了临界基流方差的雷诺数尺度,并确定了受基流不确定性影响最大的长度尺度。对于小幅摄动,我们采用摄动分析来有效地计算不确定基态周围速度波动的方差放大。我们的研究结果表明,在基流不确定性存在的情况下,流向细长流结构的鲁棒放大,并且基流调制的壁法向形状会影响不同长度尺度的放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of base flow uncertainty on transitional channel flows
We study the effect of white-in-time additive stochastic base flow perturbations on the mean-square properties of the linearized Navier-Stokes equations. Such perturbations enter the linearized dynamics as multiplicative sources of uncertainty. We adopt an input-output approach to analyze the mean-square stability and frequency response of the flow subject to additive and multiplicative uncertainty. For transitional channel flows, we uncover the Reynolds number scaling of critical base flow variances and identify length scales that are most affected by base flow uncertainty. For small-amplitude perturbations, we adopt a perturbation analysis to efficiently compute the variance amplification of velocity fluctuations around the uncertain base state. Our results demonstrate the robust amplification of streamwise elongated flow structures in the presence of base flow uncertainty and that the wall-normal shape of base flow modulations can influence the amplification of various length scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信