{"title":"通信信道控制的随机非线性系统的平稳性和遍历性","authors":"S. Yüksel","doi":"10.1109/ISIT.2016.7541728","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the following problem: Given a stochastic non-linear system controlled over a noisy channel, what is the largest class of channels for which there exist coding and control policies so that the closed loop system is stochastically stable? Stochastic stability notions considered are stationarity, ergodicity or asymptotic mean stationarity. We do not restrict the state space to be compact, for example systems considered can be driven by unbounded noise. Necessary and sufficient conditions are obtained for a large class of systems and channels. A generalization of Bode's Integral Formula for a large class of non-linear systems and information channels is obtained.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationarity and ergodicity of stochastic non-linear systems controlled over communication channels\",\"authors\":\"S. Yüksel\",\"doi\":\"10.1109/ISIT.2016.7541728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the following problem: Given a stochastic non-linear system controlled over a noisy channel, what is the largest class of channels for which there exist coding and control policies so that the closed loop system is stochastically stable? Stochastic stability notions considered are stationarity, ergodicity or asymptotic mean stationarity. We do not restrict the state space to be compact, for example systems considered can be driven by unbounded noise. Necessary and sufficient conditions are obtained for a large class of systems and channels. A generalization of Bode's Integral Formula for a large class of non-linear systems and information channels is obtained.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stationarity and ergodicity of stochastic non-linear systems controlled over communication channels
This paper is concerned with the following problem: Given a stochastic non-linear system controlled over a noisy channel, what is the largest class of channels for which there exist coding and control policies so that the closed loop system is stochastically stable? Stochastic stability notions considered are stationarity, ergodicity or asymptotic mean stationarity. We do not restrict the state space to be compact, for example systems considered can be driven by unbounded noise. Necessary and sufficient conditions are obtained for a large class of systems and channels. A generalization of Bode's Integral Formula for a large class of non-linear systems and information channels is obtained.