Juseong Lee, Ingeborg de Pater, S. Boekweit, M. Mitici
{"title":"机队起落架制动器机群维修的剩余使用寿命预测","authors":"Juseong Lee, Ingeborg de Pater, S. Boekweit, M. Mitici","doi":"10.36001/phme.2022.v7i1.3316","DOIUrl":null,"url":null,"abstract":"Several studies have proposed Remaining-Useful-Life (RUL) prognostics for aircraft components in the last years. However, few studies focus on integrating these RUL prognostics into maintenance planning frameworks. This paper proposes an optimization model for opportunistic maintenance scheduling of aircraft components that integrates RUL prognostics and that groups the maintenance of these components to reduce costs. We illustrate our approach for the maintenance of a fleet of aircraft, each equipped with multiple landing gear brakes. RUL prognostics for the landing gear brakes are obtained using a Bayesian regression model. Based on these RUL prognostics, we group the replacement of brakes using an integer linear program. As a result, we obtain a cost-optimal RUL-driven opportunistic-maintenance schedule for the brakes of a fleet of aircraft. Compared with traditional maintenance strategies, our approach leads to a reduction of up to 20% of the total maintenance costs.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Remaining-Useful-Life prognostics for opportunistic grouping of maintenance of landing gear brakes for a fleet of aircraft\",\"authors\":\"Juseong Lee, Ingeborg de Pater, S. Boekweit, M. Mitici\",\"doi\":\"10.36001/phme.2022.v7i1.3316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several studies have proposed Remaining-Useful-Life (RUL) prognostics for aircraft components in the last years. However, few studies focus on integrating these RUL prognostics into maintenance planning frameworks. This paper proposes an optimization model for opportunistic maintenance scheduling of aircraft components that integrates RUL prognostics and that groups the maintenance of these components to reduce costs. We illustrate our approach for the maintenance of a fleet of aircraft, each equipped with multiple landing gear brakes. RUL prognostics for the landing gear brakes are obtained using a Bayesian regression model. Based on these RUL prognostics, we group the replacement of brakes using an integer linear program. As a result, we obtain a cost-optimal RUL-driven opportunistic-maintenance schedule for the brakes of a fleet of aircraft. Compared with traditional maintenance strategies, our approach leads to a reduction of up to 20% of the total maintenance costs.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remaining-Useful-Life prognostics for opportunistic grouping of maintenance of landing gear brakes for a fleet of aircraft
Several studies have proposed Remaining-Useful-Life (RUL) prognostics for aircraft components in the last years. However, few studies focus on integrating these RUL prognostics into maintenance planning frameworks. This paper proposes an optimization model for opportunistic maintenance scheduling of aircraft components that integrates RUL prognostics and that groups the maintenance of these components to reduce costs. We illustrate our approach for the maintenance of a fleet of aircraft, each equipped with multiple landing gear brakes. RUL prognostics for the landing gear brakes are obtained using a Bayesian regression model. Based on these RUL prognostics, we group the replacement of brakes using an integer linear program. As a result, we obtain a cost-optimal RUL-driven opportunistic-maintenance schedule for the brakes of a fleet of aircraft. Compared with traditional maintenance strategies, our approach leads to a reduction of up to 20% of the total maintenance costs.