基于容量的互联网异常检测基准

S. Shanbhag, T. Wolf
{"title":"基于容量的互联网异常检测基准","authors":"S. Shanbhag, T. Wolf","doi":"10.1109/GLOCOM.2009.5426204","DOIUrl":null,"url":null,"abstract":"Developing algorithms to detect anomalies in network traffic is an important goal to achieve secure and efficient operation of the Internet. To evaluate different algorithms, it is crucial to have a set of standardized test cases. We propose a benchmark suite called \"AnomBench\" that consists of sixteen different traffic scenarios that contain various different traffic anomalies. We describe why these scenarios are representative and show the results of a prototype implementation on DETER-lab.","PeriodicalId":405624,"journal":{"name":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"AnomBench: A Benchmark for Volume-Based Internet Anomaly Detection\",\"authors\":\"S. Shanbhag, T. Wolf\",\"doi\":\"10.1109/GLOCOM.2009.5426204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing algorithms to detect anomalies in network traffic is an important goal to achieve secure and efficient operation of the Internet. To evaluate different algorithms, it is crucial to have a set of standardized test cases. We propose a benchmark suite called \\\"AnomBench\\\" that consists of sixteen different traffic scenarios that contain various different traffic anomalies. We describe why these scenarios are representative and show the results of a prototype implementation on DETER-lab.\",\"PeriodicalId\":405624,\"journal\":{\"name\":\"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2009.5426204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2009.5426204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

开发检测网络流量异常的算法是实现互联网安全高效运行的重要目标。为了评估不同的算法,拥有一组标准化的测试用例是至关重要的。我们提出了一个名为“AnomBench”的基准套件,它由包含各种不同流量异常的16种不同流量场景组成。我们描述了为什么这些场景具有代表性,并展示了在det -lab上原型实现的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AnomBench: A Benchmark for Volume-Based Internet Anomaly Detection
Developing algorithms to detect anomalies in network traffic is an important goal to achieve secure and efficient operation of the Internet. To evaluate different algorithms, it is crucial to have a set of standardized test cases. We propose a benchmark suite called "AnomBench" that consists of sixteen different traffic scenarios that contain various different traffic anomalies. We describe why these scenarios are representative and show the results of a prototype implementation on DETER-lab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信