IRIS-BLAS:迈向性能可移植和异构的BLAS库

Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter
{"title":"IRIS-BLAS:迈向性能可移植和异构的BLAS库","authors":"Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter","doi":"10.1109/HiPC56025.2022.00042","DOIUrl":null,"url":null,"abstract":"This paper presents IRIS-BLAS, a novel heterogeneous and performance portable BLAS library. IRIS-BLAS is built on top of the IRIS runtime and multiple vendor and open-source BLAS libraries. It can transparently use all the architectures/devices available in a heterogeneous system, using the appropriate BLAS library based on the task mapping at run time. Thus, IRIS-BLAS is portable across a broad spectrum of architectures and BLAS libraries, alleviating the worry of application developers about modifying the application source code. Even though the emphasis is on portability, IRIS-BLAS provides competitive or even better performance than other state-of-the-art references. Moreover, IRIS-BLAS offers new features such as efficiently using extremely heterogeneous systems composed of multiple GPUs from different hardware vendors.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"IRIS-BLAS: Towards a Performance Portable and Heterogeneous BLAS Library\",\"authors\":\"Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter\",\"doi\":\"10.1109/HiPC56025.2022.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents IRIS-BLAS, a novel heterogeneous and performance portable BLAS library. IRIS-BLAS is built on top of the IRIS runtime and multiple vendor and open-source BLAS libraries. It can transparently use all the architectures/devices available in a heterogeneous system, using the appropriate BLAS library based on the task mapping at run time. Thus, IRIS-BLAS is portable across a broad spectrum of architectures and BLAS libraries, alleviating the worry of application developers about modifying the application source code. Even though the emphasis is on portability, IRIS-BLAS provides competitive or even better performance than other state-of-the-art references. Moreover, IRIS-BLAS offers new features such as efficiently using extremely heterogeneous systems composed of multiple GPUs from different hardware vendors.\",\"PeriodicalId\":119363,\"journal\":{\"name\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC56025.2022.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

IRIS-BLAS是一种新型的异构、高性能便携式BLAS库。IRIS-BLAS建立在IRIS运行时和多个供应商和开源的BLAS库之上。它可以透明地使用异构系统中可用的所有体系结构/设备,在运行时使用基于任务映射的适当BLAS库。因此,IRIS-BLAS可以在广泛的体系结构和BLAS库之间移植,减轻了应用程序开发人员对修改应用程序源代码的担忧。尽管重点是便携性,但IRIS-BLAS提供了比其他最先进的参考产品更具竞争力甚至更好的性能。此外,IRIS-BLAS还提供了一些新功能,例如有效地使用由来自不同硬件供应商的多个gpu组成的极端异构系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IRIS-BLAS: Towards a Performance Portable and Heterogeneous BLAS Library
This paper presents IRIS-BLAS, a novel heterogeneous and performance portable BLAS library. IRIS-BLAS is built on top of the IRIS runtime and multiple vendor and open-source BLAS libraries. It can transparently use all the architectures/devices available in a heterogeneous system, using the appropriate BLAS library based on the task mapping at run time. Thus, IRIS-BLAS is portable across a broad spectrum of architectures and BLAS libraries, alleviating the worry of application developers about modifying the application source code. Even though the emphasis is on portability, IRIS-BLAS provides competitive or even better performance than other state-of-the-art references. Moreover, IRIS-BLAS offers new features such as efficiently using extremely heterogeneous systems composed of multiple GPUs from different hardware vendors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信