运动控制系统的比例导数型迭代学习算法

Duong Thi Thanh Huyen, Vu Van Hoc, N. T. T. Hoa
{"title":"运动控制系统的比例导数型迭代学习算法","authors":"Duong Thi Thanh Huyen, Vu Van Hoc, N. T. T. Hoa","doi":"10.31763/ijrcs.v3i2.975","DOIUrl":null,"url":null,"abstract":"In this paper, Iterative Learning Control (ILC) combined with a Proportional Derivative (PD) regulator is proposed to deal with the problem of designing a control signal for motion control systems. The main idea in iterative learning control is to gradually improve the performance of the system by exploiting data from the previous iterations. The learning control algorithm can obtain a better tracking control performance for the next run and hence outperforms conventional control approaches such as Proportional Integral Derivative (PID) controller and feedforward control. The main area of application for ILC is control of industrial robots and CNC machine tool, printing, and other industrial applications. The learning algorithms can also be used in combination with other control techniques. For example, learning feedforward control is designed in the first iteration. Then iterative learning control is applied to improve performance in the subsequent iterations. In addition, the conventional feedback regulator is designed in combination with iterative control to deal with uncertainty. Simulation results demonstrate the potential benefits, sensitivity and robustness of the proposed method.","PeriodicalId":409364,"journal":{"name":"International Journal of Robotics and Control Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proportional Derivative – Type Iterative Learning Algorithm for a Motion Control System\",\"authors\":\"Duong Thi Thanh Huyen, Vu Van Hoc, N. T. T. Hoa\",\"doi\":\"10.31763/ijrcs.v3i2.975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Iterative Learning Control (ILC) combined with a Proportional Derivative (PD) regulator is proposed to deal with the problem of designing a control signal for motion control systems. The main idea in iterative learning control is to gradually improve the performance of the system by exploiting data from the previous iterations. The learning control algorithm can obtain a better tracking control performance for the next run and hence outperforms conventional control approaches such as Proportional Integral Derivative (PID) controller and feedforward control. The main area of application for ILC is control of industrial robots and CNC machine tool, printing, and other industrial applications. The learning algorithms can also be used in combination with other control techniques. For example, learning feedforward control is designed in the first iteration. Then iterative learning control is applied to improve performance in the subsequent iterations. In addition, the conventional feedback regulator is designed in combination with iterative control to deal with uncertainty. Simulation results demonstrate the potential benefits, sensitivity and robustness of the proposed method.\",\"PeriodicalId\":409364,\"journal\":{\"name\":\"International Journal of Robotics and Control Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31763/ijrcs.v3i2.975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/ijrcs.v3i2.975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对运动控制系统的控制信号设计问题,提出了结合比例导数调节器的迭代学习控制(ILC)。迭代学习控制的主要思想是通过利用以前迭代的数据来逐步提高系统的性能。学习控制算法可以获得更好的下一轮跟踪控制性能,从而优于传统的控制方法,如比例积分导数(PID)控制器和前馈控制。ILC的主要应用领域是工业机器人和数控机床的控制、印刷和其他工业应用。学习算法也可以与其他控制技术结合使用。例如,在第一次迭代中设计了学习前馈控制。然后应用迭代学习控制来提高后续迭代的性能。此外,将传统的反馈调节器与迭代控制相结合设计,以处理不确定性。仿真结果证明了该方法的潜在优势、灵敏度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proportional Derivative – Type Iterative Learning Algorithm for a Motion Control System
In this paper, Iterative Learning Control (ILC) combined with a Proportional Derivative (PD) regulator is proposed to deal with the problem of designing a control signal for motion control systems. The main idea in iterative learning control is to gradually improve the performance of the system by exploiting data from the previous iterations. The learning control algorithm can obtain a better tracking control performance for the next run and hence outperforms conventional control approaches such as Proportional Integral Derivative (PID) controller and feedforward control. The main area of application for ILC is control of industrial robots and CNC machine tool, printing, and other industrial applications. The learning algorithms can also be used in combination with other control techniques. For example, learning feedforward control is designed in the first iteration. Then iterative learning control is applied to improve performance in the subsequent iterations. In addition, the conventional feedback regulator is designed in combination with iterative control to deal with uncertainty. Simulation results demonstrate the potential benefits, sensitivity and robustness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信