自动变权模糊共聚类

Charlotte Laclau, F. D. Carvalho, M. Nadif
{"title":"自动变权模糊共聚类","authors":"Charlotte Laclau, F. D. Carvalho, M. Nadif","doi":"10.1109/FUZZ-IEEE.2015.7337802","DOIUrl":null,"url":null,"abstract":"We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy co-clustering with automated variable weighting\",\"authors\":\"Charlotte Laclau, F. D. Carvalho, M. Nadif\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在双Kmeans算法的基础上,提出了两种模糊共聚类算法。众所周知,模糊方法比硬方法需要更多的计算时间,但模糊原理允许描述现实世界应用中经常出现的不确定性。提出的第一种算法,模糊双Kmeans (FDK)是双Kmeans (DK)的模糊版本。第二种算法,加权模糊双k均值(W-FDK),是FDK的扩展,具有自动可变加权,允许同时进行共聚类和特征选择。我们使用蒙特卡罗模拟对具有不同参数的数据集和在共聚类环境中常用的真实数据集进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy co-clustering with automated variable weighting
We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信