{"title":"自动变权模糊共聚类","authors":"Charlotte Laclau, F. D. Carvalho, M. Nadif","doi":"10.1109/FUZZ-IEEE.2015.7337802","DOIUrl":null,"url":null,"abstract":"We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy co-clustering with automated variable weighting\",\"authors\":\"Charlotte Laclau, F. D. Carvalho, M. Nadif\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy co-clustering with automated variable weighting
We propose two fuzzy co-clustering algorithms based on the double Kmeans algorithm. Fuzzy approaches are known to require more computation time than hard ones but the fuzziness principle allows a description of uncertainties that often appears in real world applications. The first algorithm proposed, fuzzy double Kmeans (FDK) is a fuzzy version of double Kmeans (DK). The second algorithm, weighted fuzzy double Kmeans (W-FDK), is an extension of FDK with automated variable weighting allowing co-clustering and feature selection simultaneously. We illustrate our contribution using Monte Carlo simulations on datasets with different parameters and real datasets commonly used in the co-clustering context.