基于时间持续函数的混合隐马尔可夫模型的汉语语音识别

Lixin Bao, J. Toyama, M. Shimbo
{"title":"基于时间持续函数的混合隐马尔可夫模型的汉语语音识别","authors":"Lixin Bao, J. Toyama, M. Shimbo","doi":"10.1109/ICOSP.1998.770288","DOIUrl":null,"url":null,"abstract":"This paper proposes mixture hidden Markov models (HMM) with a time duration function to solve the recognition of Mandarin Chinese diphthongs and several words that resemble diphthongs. We propose an autoregression model to represent the dynamical relationships of observation symbols with time variance. The model can improve the weaknesses of standard HMM and nonstationary HMM.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mandarin phonetic recognition using mixture hidden Markov models with time duration function\",\"authors\":\"Lixin Bao, J. Toyama, M. Shimbo\",\"doi\":\"10.1109/ICOSP.1998.770288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes mixture hidden Markov models (HMM) with a time duration function to solve the recognition of Mandarin Chinese diphthongs and several words that resemble diphthongs. We propose an autoregression model to represent the dynamical relationships of observation symbols with time variance. The model can improve the weaknesses of standard HMM and nonstationary HMM.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种带有时间持续函数的混合隐马尔可夫模型(HMM)来解决汉语双元音和几个类似双元音的词的识别问题。我们提出了一个自回归模型来表示观测符号随时间变化的动态关系。该模型可以改善标准HMM和非平稳HMM的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mandarin phonetic recognition using mixture hidden Markov models with time duration function
This paper proposes mixture hidden Markov models (HMM) with a time duration function to solve the recognition of Mandarin Chinese diphthongs and several words that resemble diphthongs. We propose an autoregression model to represent the dynamical relationships of observation symbols with time variance. The model can improve the weaknesses of standard HMM and nonstationary HMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信