稀疏的循环分布相对于密集的循环分布

G. Bandera, M. Ujaldón, M. A. Trenas, E. Zapata
{"title":"稀疏的循环分布相对于密集的循环分布","authors":"G. Bandera, M. Ujaldón, M. A. Trenas, E. Zapata","doi":"10.1109/IPPS.1997.580969","DOIUrl":null,"url":null,"abstract":"Several methods have been proposed in the literature for the distribution of data on distributed memory machines, either oriented to dense or sparse structures. Many of the real applications, however, deal with both kinds of data jointly. The paper presents techniques for integrating dense and sparse array accesses in a way that optimizes locality and further allows an efficient loop partitioning within a data-parallel compiler. The approach is evaluated through an experimental survey with several compilers and parallel platforms. The results prove the benefits of the BRS sparse distribution when combined with CYCLIC in mixed algorithms and the poor efficiency achieved by well-known distribution schemes when sparse elements arise in the source code.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The sparse cyclic distribution against its dense counterparts\",\"authors\":\"G. Bandera, M. Ujaldón, M. A. Trenas, E. Zapata\",\"doi\":\"10.1109/IPPS.1997.580969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several methods have been proposed in the literature for the distribution of data on distributed memory machines, either oriented to dense or sparse structures. Many of the real applications, however, deal with both kinds of data jointly. The paper presents techniques for integrating dense and sparse array accesses in a way that optimizes locality and further allows an efficient loop partitioning within a data-parallel compiler. The approach is evaluated through an experimental survey with several compilers and parallel platforms. The results prove the benefits of the BRS sparse distribution when combined with CYCLIC in mixed algorithms and the poor efficiency achieved by well-known distribution schemes when sparse elements arise in the source code.\",\"PeriodicalId\":145892,\"journal\":{\"name\":\"Proceedings 11th International Parallel Processing Symposium\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1997.580969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

文献中已经提出了几种在分布式存储机器上分布数据的方法,这些方法要么面向密集结构,要么面向稀疏结构。然而,许多实际应用程序联合处理这两种数据。本文提出了以优化局部性的方式集成密集和稀疏数组访问的技术,并进一步允许在数据并行编译器中进行有效的循环划分。通过几个编译器和并行平台的实验调查,对该方法进行了评估。结果证明了BRS稀疏分布与CYCLIC混合算法相结合的优点,以及当源代码中出现稀疏元素时,常用分布方案的效率较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The sparse cyclic distribution against its dense counterparts
Several methods have been proposed in the literature for the distribution of data on distributed memory machines, either oriented to dense or sparse structures. Many of the real applications, however, deal with both kinds of data jointly. The paper presents techniques for integrating dense and sparse array accesses in a way that optimizes locality and further allows an efficient loop partitioning within a data-parallel compiler. The approach is evaluated through an experimental survey with several compilers and parallel platforms. The results prove the benefits of the BRS sparse distribution when combined with CYCLIC in mixed algorithms and the poor efficiency achieved by well-known distribution schemes when sparse elements arise in the source code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信