最大熵准则下的扩展卡尔曼滤波

Xi Liu, Hua Qu, Ji-hong Zhao, Badong Chen
{"title":"最大熵准则下的扩展卡尔曼滤波","authors":"Xi Liu, Hua Qu, Ji-hong Zhao, Badong Chen","doi":"10.1109/IJCNN.2016.7727408","DOIUrl":null,"url":null,"abstract":"As a nonlinear extension of Kalman filter, the extended Kalman filter (EKF) is also based on the minimum mean square error (MMSE) criterion. In general, the EKF performs well in Gaussian noises. But its performance may deteriorate substantially when the system is disturbed by heavy-tailed impulsive noises. In order to improve the robustness of EKF against impulsive noises, a new filter for nonlinear systems is proposed in this paper, namely the maximum correntropy extended Kalman filter (MCEKF), which adopts the maximum correntropy criterion (MCC) as the optimization criterion instead of using the MMSE. In MCEKF, the state mean and covariance matrix propagation equation are used to obtain a prior estimation of the state and covariance matrix, and then a fixed-point algorithm is used to update the posterior estimates. The robustness of the new filter is confirmed by simulation results.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Extended Kalman filter under maximum correntropy criterion\",\"authors\":\"Xi Liu, Hua Qu, Ji-hong Zhao, Badong Chen\",\"doi\":\"10.1109/IJCNN.2016.7727408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a nonlinear extension of Kalman filter, the extended Kalman filter (EKF) is also based on the minimum mean square error (MMSE) criterion. In general, the EKF performs well in Gaussian noises. But its performance may deteriorate substantially when the system is disturbed by heavy-tailed impulsive noises. In order to improve the robustness of EKF against impulsive noises, a new filter for nonlinear systems is proposed in this paper, namely the maximum correntropy extended Kalman filter (MCEKF), which adopts the maximum correntropy criterion (MCC) as the optimization criterion instead of using the MMSE. In MCEKF, the state mean and covariance matrix propagation equation are used to obtain a prior estimation of the state and covariance matrix, and then a fixed-point algorithm is used to update the posterior estimates. The robustness of the new filter is confirmed by simulation results.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

作为卡尔曼滤波器的非线性扩展,扩展卡尔曼滤波器也是基于最小均方误差准则。一般来说,EKF在高斯噪声中表现良好。但当系统受到重尾脉冲噪声的干扰时,其性能可能会大幅下降。为了提高EKF对脉冲噪声的鲁棒性,本文提出了一种新的非线性系统滤波器,即最大熵扩展卡尔曼滤波器(MCEKF),该滤波器采用最大熵准则(MCC)作为优化准则,而不是使用MMSE。在MCEKF中,首先利用状态均值和协方差矩阵传播方程对状态和协方差矩阵进行先验估计,然后利用不动点算法对后验估计进行更新。仿真结果验证了该滤波器的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Kalman filter under maximum correntropy criterion
As a nonlinear extension of Kalman filter, the extended Kalman filter (EKF) is also based on the minimum mean square error (MMSE) criterion. In general, the EKF performs well in Gaussian noises. But its performance may deteriorate substantially when the system is disturbed by heavy-tailed impulsive noises. In order to improve the robustness of EKF against impulsive noises, a new filter for nonlinear systems is proposed in this paper, namely the maximum correntropy extended Kalman filter (MCEKF), which adopts the maximum correntropy criterion (MCC) as the optimization criterion instead of using the MMSE. In MCEKF, the state mean and covariance matrix propagation equation are used to obtain a prior estimation of the state and covariance matrix, and then a fixed-point algorithm is used to update the posterior estimates. The robustness of the new filter is confirmed by simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信