运动目标跟踪-一种参数化边缘跟踪方法

M. Murshed, M. Ali, Akber Dewan, O. Chae
{"title":"运动目标跟踪-一种参数化边缘跟踪方法","authors":"M. Murshed, M. Ali, Akber Dewan, O. Chae","doi":"10.1109/ICCIT.2009.5407285","DOIUrl":null,"url":null,"abstract":"In this paper, an edge based tracking algorithm is proposed. Our algorithm makes efficient use of edge-segment on the Canny edge map by utilizing the edge structure in the moving object region. Curvature-based features are used for moving edge registration. We use the maximum curvature correspondences between two edge segments then the 2D affine transformation computes their movement by solving a system of linear equations. The registration error is then minimized. A Kalman Filter is used to track each individual edge segments. Segments are clustered using a k-mean algorithm. Finally, a group motion tracker is used for tracking moving object from each cluster. Experiments show that our edge-segment based tracking algorithm can track moving objects efficiently under varying illumination conditions.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Moving object tracking - a parametric edge tracking approach\",\"authors\":\"M. Murshed, M. Ali, Akber Dewan, O. Chae\",\"doi\":\"10.1109/ICCIT.2009.5407285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an edge based tracking algorithm is proposed. Our algorithm makes efficient use of edge-segment on the Canny edge map by utilizing the edge structure in the moving object region. Curvature-based features are used for moving edge registration. We use the maximum curvature correspondences between two edge segments then the 2D affine transformation computes their movement by solving a system of linear equations. The registration error is then minimized. A Kalman Filter is used to track each individual edge segments. Segments are clustered using a k-mean algorithm. Finally, a group motion tracker is used for tracking moving object from each cluster. Experiments show that our edge-segment based tracking algorithm can track moving objects efficiently under varying illumination conditions.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于边缘的跟踪算法。该算法通过利用运动目标区域的边缘结构,有效地利用了Canny边缘图上的边缘段。基于曲率的特征用于移动边缘配准。我们使用两个边缘段之间的最大曲率对应,然后二维仿射变换通过求解线性方程组来计算它们的运动。然后最小化配准误差。卡尔曼滤波器用于跟踪每个单独的边缘段。使用k-均值算法对片段进行聚类。最后,利用群运动跟踪器对每个簇中的运动目标进行跟踪。实验表明,基于边缘段的跟踪算法可以在不同光照条件下有效地跟踪运动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving object tracking - a parametric edge tracking approach
In this paper, an edge based tracking algorithm is proposed. Our algorithm makes efficient use of edge-segment on the Canny edge map by utilizing the edge structure in the moving object region. Curvature-based features are used for moving edge registration. We use the maximum curvature correspondences between two edge segments then the 2D affine transformation computes their movement by solving a system of linear equations. The registration error is then minimized. A Kalman Filter is used to track each individual edge segments. Segments are clustered using a k-mean algorithm. Finally, a group motion tracker is used for tracking moving object from each cluster. Experiments show that our edge-segment based tracking algorithm can track moving objects efficiently under varying illumination conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信