公路深度神经网络的序列训练与自适应

Liang Lu
{"title":"公路深度神经网络的序列训练与自适应","authors":"Liang Lu","doi":"10.1109/SLT.2016.7846304","DOIUrl":null,"url":null,"abstract":"Highway deep neural network (HDNN) is a type of depth-gated feedforward neural network, which has shown to be easier to train with more hidden layers and also generalise better compared to conventional plain deep neural networks (DNNs). Previously, we investigated a structured HDNN architecture for speech recognition, in which the two gate functions were tied across all the hidden layers, and we were able to train a much smaller model without sacrificing the recognition accuracy. In this paper, we carry on the study of this architecture with sequence-discriminative training criterion and speaker adaptation techniques on the AMI meeting speech recognition corpus. We show that these two techniques improve speech recognition accuracy on top of the model trained with the cross entropy criterion. Furthermore, we demonstrate that the two gate functions that are tied across all the hidden layers are able to control the information flow over the whole network, and we can achieve considerable improvements by only updating these gate functions in both sequence training and adaptation experiments.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sequence training and adaptation of highway deep neural networks\",\"authors\":\"Liang Lu\",\"doi\":\"10.1109/SLT.2016.7846304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highway deep neural network (HDNN) is a type of depth-gated feedforward neural network, which has shown to be easier to train with more hidden layers and also generalise better compared to conventional plain deep neural networks (DNNs). Previously, we investigated a structured HDNN architecture for speech recognition, in which the two gate functions were tied across all the hidden layers, and we were able to train a much smaller model without sacrificing the recognition accuracy. In this paper, we carry on the study of this architecture with sequence-discriminative training criterion and speaker adaptation techniques on the AMI meeting speech recognition corpus. We show that these two techniques improve speech recognition accuracy on top of the model trained with the cross entropy criterion. Furthermore, we demonstrate that the two gate functions that are tied across all the hidden layers are able to control the information flow over the whole network, and we can achieve considerable improvements by only updating these gate functions in both sequence training and adaptation experiments.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高速公路深度神经网络(HDNN)是一种深度门控前馈神经网络,与传统的普通深度神经网络(dnn)相比,使用更多隐藏层更容易训练,并且泛化效果更好。之前,我们研究了用于语音识别的结构化HDNN架构,其中两个门函数在所有隐藏层上捆绑,我们能够在不牺牲识别精度的情况下训练更小的模型。本文以AMI会议语音识别语料库为研究对象,采用顺序判别训练准则和说话人自适应技术对该体系结构进行了研究。我们证明了这两种技术在交叉熵准则训练的模型的基础上提高了语音识别的准确性。此外,我们证明了连接在所有隐藏层上的两个门函数能够控制整个网络的信息流,并且我们可以通过在序列训练和自适应实验中仅更新这些门函数来获得相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence training and adaptation of highway deep neural networks
Highway deep neural network (HDNN) is a type of depth-gated feedforward neural network, which has shown to be easier to train with more hidden layers and also generalise better compared to conventional plain deep neural networks (DNNs). Previously, we investigated a structured HDNN architecture for speech recognition, in which the two gate functions were tied across all the hidden layers, and we were able to train a much smaller model without sacrificing the recognition accuracy. In this paper, we carry on the study of this architecture with sequence-discriminative training criterion and speaker adaptation techniques on the AMI meeting speech recognition corpus. We show that these two techniques improve speech recognition accuracy on top of the model trained with the cross entropy criterion. Furthermore, we demonstrate that the two gate functions that are tied across all the hidden layers are able to control the information flow over the whole network, and we can achieve considerable improvements by only updating these gate functions in both sequence training and adaptation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信