基于数学形态学的可学习经验模态分解

S. Velasco-Forero, R. Pagés, J. Angulo
{"title":"基于数学形态学的可学习经验模态分解","authors":"S. Velasco-Forero, R. Pagés, J. Angulo","doi":"10.1137/21m1417867","DOIUrl":null,"url":null,"abstract":". Empirical mode decomposition (EMD) is a fully data driven method for multiscale decomposing 4 signals into a set of components known as intrinsic mode functions. EMD is based on lower and 5 upper envelopes of the signal in an iterated decomposition scheme. In this paper, we put forward a 6 simple yet effective method to learn EMD from data by means of morphological operators. We pro-7 pose an end-to-end framework by incorporating morphological EMD operators into deeply learned 8 representations, trained using standard backpropagation principle and gradient descent-based opti-9 mization algorithms. Three generalizations of morphological EMD are proposed: a) by varying the 10 family of structuring functions, b) by varying the pair of morphological operators used to calculate 11 the envelopes, and c) by considering a convex sum of envelopes instead of the mean point used 12 in classical EMD. We discuss in particular the invariances that are induced by the morphological 13 EMD representation. Experimental results on supervised classification of hyperspectral images by 14 1D convolutional networks demonstrate the interest of our method. 15","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learnable Empirical Mode Decomposition based on Mathematical Morphology\",\"authors\":\"S. Velasco-Forero, R. Pagés, J. Angulo\",\"doi\":\"10.1137/21m1417867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Empirical mode decomposition (EMD) is a fully data driven method for multiscale decomposing 4 signals into a set of components known as intrinsic mode functions. EMD is based on lower and 5 upper envelopes of the signal in an iterated decomposition scheme. In this paper, we put forward a 6 simple yet effective method to learn EMD from data by means of morphological operators. We pro-7 pose an end-to-end framework by incorporating morphological EMD operators into deeply learned 8 representations, trained using standard backpropagation principle and gradient descent-based opti-9 mization algorithms. Three generalizations of morphological EMD are proposed: a) by varying the 10 family of structuring functions, b) by varying the pair of morphological operators used to calculate 11 the envelopes, and c) by considering a convex sum of envelopes instead of the mean point used 12 in classical EMD. We discuss in particular the invariances that are induced by the morphological 13 EMD representation. Experimental results on supervised classification of hyperspectral images by 14 1D convolutional networks demonstrate the interest of our method. 15\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1417867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1417867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 经验模态分解(EMD)是一种完全数据驱动的方法,用于将多尺度信号分解为一组称为本征模态函数的分量。EMD是基于信号的下包络和5个上包络的迭代分解方案。本文提出了一种简单而有效的利用形态学算子从数据中学习EMD的方法。我们提出了一个端到端的框架,将形态学EMD算子结合到深度学习的表征中,使用标准反向传播原理和基于梯度下降的优化算法进行训练。提出了形态EMD的三种推广:a)通过改变10个结构函数族,b)通过改变用于计算包络的形态学算子对,以及c)通过考虑包络的凸和而不是经典EMD中使用的平均点。我们特别讨论了由EMD形态学表示引起的不变性。用14个一维卷积网络对高光谱图像进行监督分类的实验结果证明了该方法的有效性。15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learnable Empirical Mode Decomposition based on Mathematical Morphology
. Empirical mode decomposition (EMD) is a fully data driven method for multiscale decomposing 4 signals into a set of components known as intrinsic mode functions. EMD is based on lower and 5 upper envelopes of the signal in an iterated decomposition scheme. In this paper, we put forward a 6 simple yet effective method to learn EMD from data by means of morphological operators. We pro-7 pose an end-to-end framework by incorporating morphological EMD operators into deeply learned 8 representations, trained using standard backpropagation principle and gradient descent-based opti-9 mization algorithms. Three generalizations of morphological EMD are proposed: a) by varying the 10 family of structuring functions, b) by varying the pair of morphological operators used to calculate 11 the envelopes, and c) by considering a convex sum of envelopes instead of the mean point used 12 in classical EMD. We discuss in particular the invariances that are induced by the morphological 13 EMD representation. Experimental results on supervised classification of hyperspectral images by 14 1D convolutional networks demonstrate the interest of our method. 15
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信