真空装袋泄漏检测的群等变网络

Christoph Brauer, D. Lorenz, Lionel Tondji
{"title":"真空装袋泄漏检测的群等变网络","authors":"Christoph Brauer, D. Lorenz, Lionel Tondji","doi":"10.23919/eusipco55093.2022.9909715","DOIUrl":null,"url":null,"abstract":"The incorporation of prior knowledge into the ma-chine learning pipeline is subject of informed machine learning. Spatial invariances constitute a class of prior knowledge that can be taken into account especially in the design of model architectures or through virtual training examples. In this contribution, we investigate fully connected neural network architectures that are equivariant with respect to the dihedral group of order eight. This is practically motivated by the application of leakage detection in vacuum bagging which plays an important role in the manufacturing of fiber composite components. Our approach for the derivation of an equivariant architecture is constructive and transferable to other symmetry groups. It starts from a standard network architecture and results in a specific kind of weight sharing in each layer. In numerical experiments, we compare equivariant and standard networks on a novel leakage detection dataset. Our results indicate that group equivariant networks can capture the application specific prior knowledge much better than standard networks, even if the latter are trained on augmented data.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group equivariant networks for leakage detection in vacuum bagging\",\"authors\":\"Christoph Brauer, D. Lorenz, Lionel Tondji\",\"doi\":\"10.23919/eusipco55093.2022.9909715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of prior knowledge into the ma-chine learning pipeline is subject of informed machine learning. Spatial invariances constitute a class of prior knowledge that can be taken into account especially in the design of model architectures or through virtual training examples. In this contribution, we investigate fully connected neural network architectures that are equivariant with respect to the dihedral group of order eight. This is practically motivated by the application of leakage detection in vacuum bagging which plays an important role in the manufacturing of fiber composite components. Our approach for the derivation of an equivariant architecture is constructive and transferable to other symmetry groups. It starts from a standard network architecture and results in a specific kind of weight sharing in each layer. In numerical experiments, we compare equivariant and standard networks on a novel leakage detection dataset. Our results indicate that group equivariant networks can capture the application specific prior knowledge much better than standard networks, even if the latter are trained on augmented data.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将先验知识整合到机器学习管道中是知情机器学习的主题。空间不变性构成了一类先验知识,特别是在设计模型架构或通过虚拟训练示例时可以考虑到它。在这篇文章中,我们研究了关于八阶二面体群的等变的全连接神经网络架构。这实际上是由于真空装袋中泄漏检测的应用,在纤维复合材料部件的制造中起着重要的作用。我们对等变结构的推导方法是建设性的,并且可转移到其他对称群。它从一个标准的网络体系结构开始,并在每一层中产生一种特定的权重共享。在数值实验中,我们在一个新的泄漏检测数据集上比较了等变网络和标准网络。我们的研究结果表明,群体等变网络可以比标准网络更好地捕获特定应用的先验知识,即使后者是在增强数据上训练的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group equivariant networks for leakage detection in vacuum bagging
The incorporation of prior knowledge into the ma-chine learning pipeline is subject of informed machine learning. Spatial invariances constitute a class of prior knowledge that can be taken into account especially in the design of model architectures or through virtual training examples. In this contribution, we investigate fully connected neural network architectures that are equivariant with respect to the dihedral group of order eight. This is practically motivated by the application of leakage detection in vacuum bagging which plays an important role in the manufacturing of fiber composite components. Our approach for the derivation of an equivariant architecture is constructive and transferable to other symmetry groups. It starts from a standard network architecture and results in a specific kind of weight sharing in each layer. In numerical experiments, we compare equivariant and standard networks on a novel leakage detection dataset. Our results indicate that group equivariant networks can capture the application specific prior knowledge much better than standard networks, even if the latter are trained on augmented data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信