基于梯度矢量流分析的大规模多序列比对可视化

Tan Khoa Nguyen, T. Ropinski
{"title":"基于梯度矢量流分析的大规模多序列比对可视化","authors":"Tan Khoa Nguyen, T. Ropinski","doi":"10.1109/BioVis.2013.6664341","DOIUrl":null,"url":null,"abstract":"Multiple sequence alignment (MSA) is essential as an initial step in studying molecular phylogeny as well as during the identification of genomic rearrangements. Recent advances in sequencing techniques have led to a tremendous increase in the number of sequences to be analyzed. As a result, a greater demand is being placed on visualization techniques, as they have the potential to reveal the underlying information in large-scale MSAs. In this work, we present a novel visualization technique for conveying the patterns in large-scale MSAs. By applying gradient vector flow analysis to the MSA data, we can extract and visually emphasize conservations and other patterns that are relevant during the MSA exploration process. In contrast to the traditional visual representation of MSAs, which exploits color-coded tables, the proposed visual metaphor allows us to provide an overview of large MSAs as well as to highlight global patterns, outliers, and data distributions. We will motivate and describe the proposed algorithm, and further demonstrate its application to large-scale MSAs.","PeriodicalId":356842,"journal":{"name":"2013 IEEE Symposium on Biological Data Visualization (BioVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Large-scale multiple sequence alignment visualization through gradient vector flow analysis\",\"authors\":\"Tan Khoa Nguyen, T. Ropinski\",\"doi\":\"10.1109/BioVis.2013.6664341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple sequence alignment (MSA) is essential as an initial step in studying molecular phylogeny as well as during the identification of genomic rearrangements. Recent advances in sequencing techniques have led to a tremendous increase in the number of sequences to be analyzed. As a result, a greater demand is being placed on visualization techniques, as they have the potential to reveal the underlying information in large-scale MSAs. In this work, we present a novel visualization technique for conveying the patterns in large-scale MSAs. By applying gradient vector flow analysis to the MSA data, we can extract and visually emphasize conservations and other patterns that are relevant during the MSA exploration process. In contrast to the traditional visual representation of MSAs, which exploits color-coded tables, the proposed visual metaphor allows us to provide an overview of large MSAs as well as to highlight global patterns, outliers, and data distributions. We will motivate and describe the proposed algorithm, and further demonstrate its application to large-scale MSAs.\",\"PeriodicalId\":356842,\"journal\":{\"name\":\"2013 IEEE Symposium on Biological Data Visualization (BioVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Biological Data Visualization (BioVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioVis.2013.6664341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Biological Data Visualization (BioVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioVis.2013.6664341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多序列比对(Multiple sequence alignment, MSA)是研究分子系统发育和鉴定基因组重排过程中必不可少的第一步。测序技术的最新进展导致了需要分析的序列数量的巨大增加。因此,对可视化技术提出了更大的需求,因为它们有可能揭示大规模msa中的基础信息。在这项工作中,我们提出了一种新的可视化技术来传达大规模msa中的模式。通过将梯度矢量流分析应用于MSA数据,我们可以提取并可视化地强调在MSA勘探过程中相关的保护和其他模式。与利用颜色编码表的msa的传统视觉表示相比,所提出的视觉隐喻允许我们提供大型msa的概述,并突出显示全局模式、异常值和数据分布。我们将激励和描述所提出的算法,并进一步展示其在大规模msa中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale multiple sequence alignment visualization through gradient vector flow analysis
Multiple sequence alignment (MSA) is essential as an initial step in studying molecular phylogeny as well as during the identification of genomic rearrangements. Recent advances in sequencing techniques have led to a tremendous increase in the number of sequences to be analyzed. As a result, a greater demand is being placed on visualization techniques, as they have the potential to reveal the underlying information in large-scale MSAs. In this work, we present a novel visualization technique for conveying the patterns in large-scale MSAs. By applying gradient vector flow analysis to the MSA data, we can extract and visually emphasize conservations and other patterns that are relevant during the MSA exploration process. In contrast to the traditional visual representation of MSAs, which exploits color-coded tables, the proposed visual metaphor allows us to provide an overview of large MSAs as well as to highlight global patterns, outliers, and data distributions. We will motivate and describe the proposed algorithm, and further demonstrate its application to large-scale MSAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信