A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport
{"title":"随机间隙和异常值数据的非线性平滑(DRAGO)改进了昼夜节律的估计","authors":"A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport","doi":"10.1109/SPMB47826.2019.9037837","DOIUrl":null,"url":null,"abstract":"Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Smoothing of Data with Random Gaps and Outliers (DRAGO) Improves Estimation of Circadian Rhythm\",\"authors\":\"A. Parekh, I. Ayappa, R. Osorio, I. Selesnick, A. Baroni, M. Miller, B. Cavedoni, H. Sanders, A. Varga, E. Blessing, D. Rapoport\",\"doi\":\"10.1109/SPMB47826.2019.9037837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.\",\"PeriodicalId\":143197,\"journal\":{\"name\":\"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPMB47826.2019.9037837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Smoothing of Data with Random Gaps and Outliers (DRAGO) Improves Estimation of Circadian Rhythm
Core body temperature measurement using an ingestible pill has been proven effective for field-based ambulatory applications. The ingestible pill overcomes many impracticalities related with traditional methods of assessing core body temperature, however, it suffers from two key issues: random gaps due to missing data and outliers due to electromagnetic intereference. In this paper, we propose a principled convex optimization based framework for preprocessing the raw core body temperature signal. The proposed framework assumes that the raw core body temperature signal consists of two components: a smooth low-frequency component and a transient component with sparse outliers. We derive a computationally efficient algorithm using the majorization-minimization procedure and show its performance on simulated data. Finally, we demonstrate utility of the proposed method for estimating the circadian rhythm of core body temperature in cognitively normal elderly.