基于分类的重复书目元数据自动识别方法

E. N. Borges, K. Becker, C. Heuser, R. Galante
{"title":"基于分类的重复书目元数据自动识别方法","authors":"E. N. Borges, K. Becker, C. Heuser, R. Galante","doi":"10.1109/SCCC.2011.8","DOIUrl":null,"url":null,"abstract":"References are the main descriptive metadata used by digital libraries of scientific articles. These references can be represented by several formats and styles. Although considerable content variations can also occur in some metadata fields such as title, author names and publication venue. Duplicate records influence the quality of digital library services once they need to be appropriately identified and treated. This paper presents an approach to identifying duplicated bibliographic metadata. We extend our previous work so that instead of setting thresholds based on the scores returned by similarity functions, we use the scores to train classification algorithms which automatically identify duplicated references. The experiments show that the classifiers increases up to 11% the quality of results when compared to our unsupervised heuristic-based approach.","PeriodicalId":173639,"journal":{"name":"2011 30th International Conference of the Chilean Computer Science Society","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Automatic Approach for Duplicate Bibliographic Metadata Identification Using Classification\",\"authors\":\"E. N. Borges, K. Becker, C. Heuser, R. Galante\",\"doi\":\"10.1109/SCCC.2011.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"References are the main descriptive metadata used by digital libraries of scientific articles. These references can be represented by several formats and styles. Although considerable content variations can also occur in some metadata fields such as title, author names and publication venue. Duplicate records influence the quality of digital library services once they need to be appropriately identified and treated. This paper presents an approach to identifying duplicated bibliographic metadata. We extend our previous work so that instead of setting thresholds based on the scores returned by similarity functions, we use the scores to train classification algorithms which automatically identify duplicated references. The experiments show that the classifiers increases up to 11% the quality of results when compared to our unsupervised heuristic-based approach.\",\"PeriodicalId\":173639,\"journal\":{\"name\":\"2011 30th International Conference of the Chilean Computer Science Society\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 30th International Conference of the Chilean Computer Science Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2011.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 30th International Conference of the Chilean Computer Science Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2011.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

参考文献是科技文章数字图书馆使用的主要描述性元数据。这些引用可以用几种格式和样式表示。尽管在一些元数据字段(如标题、作者姓名和出版地点)中也可能出现相当大的内容变化。一旦需要对重复记录进行适当的识别和处理,就会影响数字图书馆服务的质量。本文提出了一种识别重复书目元数据的方法。我们扩展了之前的工作,不再根据相似函数返回的分数设置阈值,而是使用分数来训练自动识别重复引用的分类算法。实验表明,与我们的无监督启发式方法相比,分类器的结果质量提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Automatic Approach for Duplicate Bibliographic Metadata Identification Using Classification
References are the main descriptive metadata used by digital libraries of scientific articles. These references can be represented by several formats and styles. Although considerable content variations can also occur in some metadata fields such as title, author names and publication venue. Duplicate records influence the quality of digital library services once they need to be appropriately identified and treated. This paper presents an approach to identifying duplicated bibliographic metadata. We extend our previous work so that instead of setting thresholds based on the scores returned by similarity functions, we use the scores to train classification algorithms which automatically identify duplicated references. The experiments show that the classifiers increases up to 11% the quality of results when compared to our unsupervised heuristic-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信