基于稀疏表示的高光谱图像分类

Yi Chen, N. Nasrabadi, T. Tran
{"title":"基于稀疏表示的高光谱图像分类","authors":"Yi Chen, N. Nasrabadi, T. Tran","doi":"10.1109/WHISPERS.2010.5594882","DOIUrl":null,"url":null,"abstract":"A new sparsity-based classification algorithm for hyperspectral imagery is proposed in this paper. This algorithm is based on the assumption that the spectral signatures of pixels in the same class lie in a low-dimensional subspace and thus a test sample can be represented by a sparse linear combination of the training samples. The sparse representation is recovered by solving a constrained optimization and it directly determines the class label of the test sample. In addition to the constraints on sparsity and reconstruction accuracy, the smoothness of hyperspectral images across neighboring pixels is also exploited by forcing the Laplacian of the reconstructed image to be minimum in the optimization process. Various sparse recovery techniques are applied to solve the optimization problem and their performances are compared against the widely used Support Vector Machine classifier. Simulation results show that the proposed algorithm yields a favorable performance over the support vector machines.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Classification for hyperspectral imagery based on sparse representation\",\"authors\":\"Yi Chen, N. Nasrabadi, T. Tran\",\"doi\":\"10.1109/WHISPERS.2010.5594882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new sparsity-based classification algorithm for hyperspectral imagery is proposed in this paper. This algorithm is based on the assumption that the spectral signatures of pixels in the same class lie in a low-dimensional subspace and thus a test sample can be represented by a sparse linear combination of the training samples. The sparse representation is recovered by solving a constrained optimization and it directly determines the class label of the test sample. In addition to the constraints on sparsity and reconstruction accuracy, the smoothness of hyperspectral images across neighboring pixels is also exploited by forcing the Laplacian of the reconstructed image to be minimum in the optimization process. Various sparse recovery techniques are applied to solve the optimization problem and their performances are compared against the widely used Support Vector Machine classifier. Simulation results show that the proposed algorithm yields a favorable performance over the support vector machines.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

提出了一种新的基于稀疏度的高光谱图像分类算法。该算法基于同一类像素的光谱特征位于低维子空间的假设,因此测试样本可以由训练样本的稀疏线性组合表示。通过求解约束优化恢复稀疏表示,它直接决定了测试样本的类标号。在优化过程中,除了对稀疏性和重建精度的约束外,还通过强制重建图像的拉普拉斯最小来利用高光谱图像在相邻像素之间的平滑性。应用了各种稀疏恢复技术来解决优化问题,并与广泛使用的支持向量机分类器进行了性能比较。仿真结果表明,该算法比支持向量机具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification for hyperspectral imagery based on sparse representation
A new sparsity-based classification algorithm for hyperspectral imagery is proposed in this paper. This algorithm is based on the assumption that the spectral signatures of pixels in the same class lie in a low-dimensional subspace and thus a test sample can be represented by a sparse linear combination of the training samples. The sparse representation is recovered by solving a constrained optimization and it directly determines the class label of the test sample. In addition to the constraints on sparsity and reconstruction accuracy, the smoothness of hyperspectral images across neighboring pixels is also exploited by forcing the Laplacian of the reconstructed image to be minimum in the optimization process. Various sparse recovery techniques are applied to solve the optimization problem and their performances are compared against the widely used Support Vector Machine classifier. Simulation results show that the proposed algorithm yields a favorable performance over the support vector machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信