矩不等式模型中的贝叶斯分析

Yuan Liao, Wenxin Jiang
{"title":"矩不等式模型中的贝叶斯分析","authors":"Yuan Liao, Wenxin Jiang","doi":"10.2139/ssrn.2028118","DOIUrl":null,"url":null,"abstract":"This paper presents a study of the large-sample behavior of the posterior distribution of a structural parameter which is partially identified by moment inequalities. The posterior density is derived based on the limited information likelihood. The posterior distribution converges to zero exponentially fast on any δ -contraction outside the identified region. Inside, it is bounded below by a positive constant if the identified region is assumed to have a nonempty interior. Our simulation evidence indicates that the Bayesian approach has advantages over frequentist methods, in the sense that, with a proper choice of the prior, the posterior provides more information about the true parameter inside the identified region.We also address the problem of moment and model selection. Our optimality criterion is the maximum posterior procedure and we show that, asymptotically, it selects the true moment/model combination with the most moment inequalities and the simplest model.","PeriodicalId":163739,"journal":{"name":"ERN: Model Construction & Selection (Topic)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Bayesian Analysis in Moment Inequality Models\",\"authors\":\"Yuan Liao, Wenxin Jiang\",\"doi\":\"10.2139/ssrn.2028118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study of the large-sample behavior of the posterior distribution of a structural parameter which is partially identified by moment inequalities. The posterior density is derived based on the limited information likelihood. The posterior distribution converges to zero exponentially fast on any δ -contraction outside the identified region. Inside, it is bounded below by a positive constant if the identified region is assumed to have a nonempty interior. Our simulation evidence indicates that the Bayesian approach has advantages over frequentist methods, in the sense that, with a proper choice of the prior, the posterior provides more information about the true parameter inside the identified region.We also address the problem of moment and model selection. Our optimality criterion is the maximum posterior procedure and we show that, asymptotically, it selects the true moment/model combination with the most moment inequalities and the simplest model.\",\"PeriodicalId\":163739,\"journal\":{\"name\":\"ERN: Model Construction & Selection (Topic)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Selection (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2028118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Selection (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2028118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文研究了部分由矩不等式识别的结构参数后验分布的大样本行为。后验密度是基于有限信息似然导出的。后验分布在识别区域以外的任何δ -收缩上以指数速度收敛于零。在内部,如果假定已确定的区域具有非空的内部,则它以一个正常数为界。我们的模拟证据表明,贝叶斯方法比频率方法有优势,在某种意义上,通过适当的先验选择,后验提供了更多关于识别区域内真实参数的信息。我们还讨论了矩和模型选择的问题。我们的最优性准则是最大后验过程,我们证明,渐近地,它选择真正的矩/模型组合与最多的矩不等式和最简单的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Analysis in Moment Inequality Models
This paper presents a study of the large-sample behavior of the posterior distribution of a structural parameter which is partially identified by moment inequalities. The posterior density is derived based on the limited information likelihood. The posterior distribution converges to zero exponentially fast on any δ -contraction outside the identified region. Inside, it is bounded below by a positive constant if the identified region is assumed to have a nonempty interior. Our simulation evidence indicates that the Bayesian approach has advantages over frequentist methods, in the sense that, with a proper choice of the prior, the posterior provides more information about the true parameter inside the identified region.We also address the problem of moment and model selection. Our optimality criterion is the maximum posterior procedure and we show that, asymptotically, it selects the true moment/model combination with the most moment inequalities and the simplest model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信