N. Pervin, Fang Fang, Anindya Datta, K. Dutta, Debra E. VanderMeer
{"title":"快速、可扩展、上下文敏感的微博帖子流趋势话题检测","authors":"N. Pervin, Fang Fang, Anindya Datta, K. Dutta, Debra E. VanderMeer","doi":"10.1145/2407740.2407743","DOIUrl":null,"url":null,"abstract":"Social networks, such as Twitter, can quickly and broadly disseminate news and memes across both real-world events and cultural trends. Such networks are often the best sources of up-to-the-minute information, and are therefore of considerable commercial and consumer interest. The trending topics that appear first on these networks represent an answer to the age-old query “what are people talking about?” Given the incredible volume of posts (on the order of 45,000 or more per minute), and the vast number of stories about which users are posting at any given time, it is a formidable problem to extract trending stories in real time. In this article, we describe a method and implementation for extracting trending topics from a high-velocity real-time stream of microblog posts. We describe our approach and implementation, and a set of experimental results that show that our system can accurately find “hot” stories from high-rate Twitter-scale text streams.","PeriodicalId":178565,"journal":{"name":"ACM Trans. Manag. Inf. Syst.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams\",\"authors\":\"N. Pervin, Fang Fang, Anindya Datta, K. Dutta, Debra E. VanderMeer\",\"doi\":\"10.1145/2407740.2407743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks, such as Twitter, can quickly and broadly disseminate news and memes across both real-world events and cultural trends. Such networks are often the best sources of up-to-the-minute information, and are therefore of considerable commercial and consumer interest. The trending topics that appear first on these networks represent an answer to the age-old query “what are people talking about?” Given the incredible volume of posts (on the order of 45,000 or more per minute), and the vast number of stories about which users are posting at any given time, it is a formidable problem to extract trending stories in real time. In this article, we describe a method and implementation for extracting trending topics from a high-velocity real-time stream of microblog posts. We describe our approach and implementation, and a set of experimental results that show that our system can accurately find “hot” stories from high-rate Twitter-scale text streams.\",\"PeriodicalId\":178565,\"journal\":{\"name\":\"ACM Trans. Manag. Inf. Syst.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Manag. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2407740.2407743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Manag. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2407740.2407743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams
Social networks, such as Twitter, can quickly and broadly disseminate news and memes across both real-world events and cultural trends. Such networks are often the best sources of up-to-the-minute information, and are therefore of considerable commercial and consumer interest. The trending topics that appear first on these networks represent an answer to the age-old query “what are people talking about?” Given the incredible volume of posts (on the order of 45,000 or more per minute), and the vast number of stories about which users are posting at any given time, it is a formidable problem to extract trending stories in real time. In this article, we describe a method and implementation for extracting trending topics from a high-velocity real-time stream of microblog posts. We describe our approach and implementation, and a set of experimental results that show that our system can accurately find “hot” stories from high-rate Twitter-scale text streams.