机器学习云api的使用是否正确?

Chengcheng Wan, Shicheng Liu, H. Hoffmann, M. Maire, Shan Lu
{"title":"机器学习云api的使用是否正确?","authors":"Chengcheng Wan, Shicheng Liu, H. Hoffmann, M. Maire, Shan Lu","doi":"10.1109/ICSE43902.2021.00024","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) cloud APIs enable developers to easily incorporate learning solutions into software systems. Unfortunately, ML APIs are challenging to use correctly and efficiently, given their unique semantics, data requirements, and accuracy-performance tradeoffs. Much prior work has studied how to develop ML APIs or ML cloud services, but not how open-source applications are using ML APIs. In this paper, we manually studied 360 representative open-source applications that use Google or AWS cloud-based ML APIs, and found 70% of these applications contain API misuses in their latest versions that degrade functional, performance, or economical quality of the software. We have generalized 8 anti-patterns based on our manual study and developed automated checkers that identify hundreds of more applications that contain ML API misuses.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Are Machine Learning Cloud APIs Used Correctly?\",\"authors\":\"Chengcheng Wan, Shicheng Liu, H. Hoffmann, M. Maire, Shan Lu\",\"doi\":\"10.1109/ICSE43902.2021.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) cloud APIs enable developers to easily incorporate learning solutions into software systems. Unfortunately, ML APIs are challenging to use correctly and efficiently, given their unique semantics, data requirements, and accuracy-performance tradeoffs. Much prior work has studied how to develop ML APIs or ML cloud services, but not how open-source applications are using ML APIs. In this paper, we manually studied 360 representative open-source applications that use Google or AWS cloud-based ML APIs, and found 70% of these applications contain API misuses in their latest versions that degrade functional, performance, or economical quality of the software. We have generalized 8 anti-patterns based on our manual study and developed automated checkers that identify hundreds of more applications that contain ML API misuses.\",\"PeriodicalId\":305167,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE43902.2021.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

机器学习(ML)云api使开发人员能够轻松地将学习解决方案整合到软件系统中。不幸的是,考虑到ML api独特的语义、数据需求和准确性与性能之间的权衡,要正确有效地使用ML api是一项挑战。许多先前的工作研究了如何开发ML api或ML云服务,但没有研究开源应用程序如何使用ML api。在本文中,我们人工研究了360个使用Google或AWS基于云的ML API的代表性开源应用程序,发现70%的应用程序在其最新版本中包含API误用,从而降低了软件的功能、性能或经济质量。基于我们的人工研究,我们概括了8种反模式,并开发了自动检查器,以识别数百个包含ML API滥用的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Machine Learning Cloud APIs Used Correctly?
Machine learning (ML) cloud APIs enable developers to easily incorporate learning solutions into software systems. Unfortunately, ML APIs are challenging to use correctly and efficiently, given their unique semantics, data requirements, and accuracy-performance tradeoffs. Much prior work has studied how to develop ML APIs or ML cloud services, but not how open-source applications are using ML APIs. In this paper, we manually studied 360 representative open-source applications that use Google or AWS cloud-based ML APIs, and found 70% of these applications contain API misuses in their latest versions that degrade functional, performance, or economical quality of the software. We have generalized 8 anti-patterns based on our manual study and developed automated checkers that identify hundreds of more applications that contain ML API misuses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信