AF双向中继网络中基于训练的同步与信道估计

A. Nasir, H. Mehrpouyan, S. Durrani, S. Blostein, R. Kennedy
{"title":"AF双向中继网络中基于训练的同步与信道估计","authors":"A. Nasir, H. Mehrpouyan, S. Durrani, S. Blostein, R. Kennedy","doi":"10.1109/SPAWC.2014.6941617","DOIUrl":null,"url":null,"abstract":"Two-way relaying networks (TWRNs) allow for more bandwidth efficient use of the available spectrum since they allow for simultaneous information exchange between two users with the assistance of an intermediate relay node. However, due to superposition of signals at the relay node, the received signal at the user terminals is affected by multiple impairments, i.e., channel gains, timing offsets, and carrier frequency offsets, that need to be jointly estimated and compensated. This paper presents a training-based system model for amplify-and-forward (AF) TWRNs in the presence of multiple impairments and proposes maximum likelihood and differential evolution based algorithms for joint estimation of these impairments. The Cramér-Rao lower bounds (CRLBs) for the joint estimation of multiple impairments are derived. A minimum mean-square error based receiver is then proposed to compensate the effect of multiple impairments and decode each user's signal. Simulation results show that the performance of the proposed estimators is very close to the derived CRLBs at moderate-to-high signal-to-noise-ratios. It is also shown that the bit-error rate performance of the overall AF TWRN is close to a TWRN that is based on assumption of perfect knowledge of the synchronization parameters.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Training-based synchronization and channel estimation in AF two-way relaying networks\",\"authors\":\"A. Nasir, H. Mehrpouyan, S. Durrani, S. Blostein, R. Kennedy\",\"doi\":\"10.1109/SPAWC.2014.6941617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-way relaying networks (TWRNs) allow for more bandwidth efficient use of the available spectrum since they allow for simultaneous information exchange between two users with the assistance of an intermediate relay node. However, due to superposition of signals at the relay node, the received signal at the user terminals is affected by multiple impairments, i.e., channel gains, timing offsets, and carrier frequency offsets, that need to be jointly estimated and compensated. This paper presents a training-based system model for amplify-and-forward (AF) TWRNs in the presence of multiple impairments and proposes maximum likelihood and differential evolution based algorithms for joint estimation of these impairments. The Cramér-Rao lower bounds (CRLBs) for the joint estimation of multiple impairments are derived. A minimum mean-square error based receiver is then proposed to compensate the effect of multiple impairments and decode each user's signal. Simulation results show that the performance of the proposed estimators is very close to the derived CRLBs at moderate-to-high signal-to-noise-ratios. It is also shown that the bit-error rate performance of the overall AF TWRN is close to a TWRN that is based on assumption of perfect knowledge of the synchronization parameters.\",\"PeriodicalId\":420837,\"journal\":{\"name\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2014.6941617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

双向中继网络(TWRNs)允许更有效地利用可用频谱,因为它们允许在中间中继节点的帮助下在两个用户之间同时进行信息交换。然而,由于中继节点信号的叠加,用户终端接收到的信号受到多重损伤的影响,即信道增益、时序偏移和载波频率偏移,需要对这些损伤进行联合估计和补偿。本文提出了一种基于训练的放大前向(AF) TWRNs存在多重损伤的系统模型,并提出了基于极大似然和差分进化的算法来联合估计这些损伤。导出了多重损伤联合估计的cram - rao下界(CRLBs)。然后提出了一种基于最小均方误差的接收机来补偿多重损伤的影响,并对每个用户的信号进行解码。仿真结果表明,在中高信噪比下,所提估计器的性能与推导的crlb非常接近。研究还表明,整个AF TWRN的误码率性能接近于基于完全了解同步参数假设的TWRN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training-based synchronization and channel estimation in AF two-way relaying networks
Two-way relaying networks (TWRNs) allow for more bandwidth efficient use of the available spectrum since they allow for simultaneous information exchange between two users with the assistance of an intermediate relay node. However, due to superposition of signals at the relay node, the received signal at the user terminals is affected by multiple impairments, i.e., channel gains, timing offsets, and carrier frequency offsets, that need to be jointly estimated and compensated. This paper presents a training-based system model for amplify-and-forward (AF) TWRNs in the presence of multiple impairments and proposes maximum likelihood and differential evolution based algorithms for joint estimation of these impairments. The Cramér-Rao lower bounds (CRLBs) for the joint estimation of multiple impairments are derived. A minimum mean-square error based receiver is then proposed to compensate the effect of multiple impairments and decode each user's signal. Simulation results show that the performance of the proposed estimators is very close to the derived CRLBs at moderate-to-high signal-to-noise-ratios. It is also shown that the bit-error rate performance of the overall AF TWRN is close to a TWRN that is based on assumption of perfect knowledge of the synchronization parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信