基于时域和特征域神经网络的光特征值调制信号解调方法分析

Shingo Sato, K. Mishina, D. Hisano, A. Maruta
{"title":"基于时域和特征域神经网络的光特征值调制信号解调方法分析","authors":"Shingo Sato, K. Mishina, D. Hisano, A. Maruta","doi":"10.1109/OECC48412.2020.9273654","DOIUrl":null,"url":null,"abstract":"We investigate the reason why the artificial neural network-based demodulators for optical eigenvalue modulated signals show a BER improvement compared with conventional demodulators. Both nonlinear and high-dimensional classifications in eigenvalue-domain contribute to the BER improvement.","PeriodicalId":433309,"journal":{"name":"2020 Opto-Electronics and Communications Conference (OECC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Time- and Eigenvalue-Domain Neural Network-Based Demodulators for Optical Eigenvalue Modulated Signals\",\"authors\":\"Shingo Sato, K. Mishina, D. Hisano, A. Maruta\",\"doi\":\"10.1109/OECC48412.2020.9273654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the reason why the artificial neural network-based demodulators for optical eigenvalue modulated signals show a BER improvement compared with conventional demodulators. Both nonlinear and high-dimensional classifications in eigenvalue-domain contribute to the BER improvement.\",\"PeriodicalId\":433309,\"journal\":{\"name\":\"2020 Opto-Electronics and Communications Conference (OECC)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Opto-Electronics and Communications Conference (OECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OECC48412.2020.9273654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Opto-Electronics and Communications Conference (OECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OECC48412.2020.9273654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于人工神经网络的光特征值调制信号解调比传统解调具有更好的误码率的原因。特征值域的非线性和高维分类都有助于提高误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Time- and Eigenvalue-Domain Neural Network-Based Demodulators for Optical Eigenvalue Modulated Signals
We investigate the reason why the artificial neural network-based demodulators for optical eigenvalue modulated signals show a BER improvement compared with conventional demodulators. Both nonlinear and high-dimensional classifications in eigenvalue-domain contribute to the BER improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信