K. Deng, H. K. Nejadkhaki, F. M. Pasquali, A. Amaria, J. Armstrong, John F. Hall
{"title":"确定3D打印碳纤维增强尼龙弹性模量和拉伸强度的混合规则模型","authors":"K. Deng, H. K. Nejadkhaki, F. M. Pasquali, A. Amaria, J. Armstrong, John F. Hall","doi":"10.1115/detc2019-98024","DOIUrl":null,"url":null,"abstract":"\n A model to compute the elastic modulus and tensile properties of 3D printed Carbon Fiber Reinforced Polymers (CFRP) is presented. The material under consideration is Carbon Fiber Reinforced Nylon (CFRN) produced in a Fused Deposition Modeling (FDM) process. A relationship between the nylon raster in each layer and the carbon fiber volume fraction was devised with the help of a scanning electron microscope (SEM). Thirteen groups with different layer configurations and carbon-fiber percentages were formulated and tested to obtain the elastic modulus and tensile strength. This study focused only on the properties along the printed fiber direction. The results from these tests were analyzed within the rule of mixtures framework. The results suggest that the rule of mixtures can be successfully applied to unidirectional CFRP fabricated using additive manufacturing.","PeriodicalId":365601,"journal":{"name":"Volume 2A: 45th Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rule of Mixtures Model to Determine Elastic Modulus and Tensile Strength of 3D Printed Carbon Fiber Reinforced Nylon\",\"authors\":\"K. Deng, H. K. Nejadkhaki, F. M. Pasquali, A. Amaria, J. Armstrong, John F. Hall\",\"doi\":\"10.1115/detc2019-98024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A model to compute the elastic modulus and tensile properties of 3D printed Carbon Fiber Reinforced Polymers (CFRP) is presented. The material under consideration is Carbon Fiber Reinforced Nylon (CFRN) produced in a Fused Deposition Modeling (FDM) process. A relationship between the nylon raster in each layer and the carbon fiber volume fraction was devised with the help of a scanning electron microscope (SEM). Thirteen groups with different layer configurations and carbon-fiber percentages were formulated and tested to obtain the elastic modulus and tensile strength. This study focused only on the properties along the printed fiber direction. The results from these tests were analyzed within the rule of mixtures framework. The results suggest that the rule of mixtures can be successfully applied to unidirectional CFRP fabricated using additive manufacturing.\",\"PeriodicalId\":365601,\"journal\":{\"name\":\"Volume 2A: 45th Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 45th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rule of Mixtures Model to Determine Elastic Modulus and Tensile Strength of 3D Printed Carbon Fiber Reinforced Nylon
A model to compute the elastic modulus and tensile properties of 3D printed Carbon Fiber Reinforced Polymers (CFRP) is presented. The material under consideration is Carbon Fiber Reinforced Nylon (CFRN) produced in a Fused Deposition Modeling (FDM) process. A relationship between the nylon raster in each layer and the carbon fiber volume fraction was devised with the help of a scanning electron microscope (SEM). Thirteen groups with different layer configurations and carbon-fiber percentages were formulated and tested to obtain the elastic modulus and tensile strength. This study focused only on the properties along the printed fiber direction. The results from these tests were analyzed within the rule of mixtures framework. The results suggest that the rule of mixtures can be successfully applied to unidirectional CFRP fabricated using additive manufacturing.