基于相似矩阵可视化的恶意软件分类

S. Venkatraman, M. Alazab
{"title":"基于相似矩阵可视化的恶意软件分类","authors":"S. Venkatraman, M. Alazab","doi":"10.1109/CCC.2017.11","DOIUrl":null,"url":null,"abstract":"Malicious software (malware) attacks are on the rise with the explosion of Internet of Things (IoT) worldwide. With the proliferation of Big Data, it becomes a time consuming process to use various automatic approaches and techniques that are available to detect and capture malware thoroughly. Visualisation techniques can support the malware analysis process for performing the similarity comparisons and summarisation of possible malware in such Big Data contexts. In this paper, we design a novel classification of malware using visualization of similarity matrices. The prime motivation of our proposal is to detect unknown malwares that undergo the innumerable obfuscations of extended x86 IA-32 (opcodes) in order to evade from traditional detection methods. Overall, the high accuracy of classification achieved with our proposed model can be observed visually due to significant dissimilarity of the behaviour patterns exhibited by malware opcodes as compared to benign opcodes.","PeriodicalId":367472,"journal":{"name":"2017 Cybersecurity and Cyberforensics Conference (CCC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of Malware Using Visualisation of Similarity Matrices\",\"authors\":\"S. Venkatraman, M. Alazab\",\"doi\":\"10.1109/CCC.2017.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malicious software (malware) attacks are on the rise with the explosion of Internet of Things (IoT) worldwide. With the proliferation of Big Data, it becomes a time consuming process to use various automatic approaches and techniques that are available to detect and capture malware thoroughly. Visualisation techniques can support the malware analysis process for performing the similarity comparisons and summarisation of possible malware in such Big Data contexts. In this paper, we design a novel classification of malware using visualization of similarity matrices. The prime motivation of our proposal is to detect unknown malwares that undergo the innumerable obfuscations of extended x86 IA-32 (opcodes) in order to evade from traditional detection methods. Overall, the high accuracy of classification achieved with our proposed model can be observed visually due to significant dissimilarity of the behaviour patterns exhibited by malware opcodes as compared to benign opcodes.\",\"PeriodicalId\":367472,\"journal\":{\"name\":\"2017 Cybersecurity and Cyberforensics Conference (CCC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Cybersecurity and Cyberforensics Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2017.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Cybersecurity and Cyberforensics Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2017.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着全球物联网(IoT)的爆炸式增长,恶意软件(malware)攻击呈上升趋势。随着大数据的扩散,使用各种可用的自动方法和技术来彻底检测和捕获恶意软件成为一个耗时的过程。可视化技术可以支持恶意软件分析过程,以便在这种大数据环境中对可能的恶意软件进行相似性比较和总结。本文设计了一种基于相似矩阵可视化的恶意软件分类方法。我们提议的主要动机是检测未知的恶意软件,这些恶意软件经历了扩展x86 IA-32(操作码)的无数混淆,以逃避传统的检测方法。总体而言,由于恶意操作码与良性操作码表现出的行为模式存在显著差异,因此可以从视觉上观察到使用我们提出的模型实现的高分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Malware Using Visualisation of Similarity Matrices
Malicious software (malware) attacks are on the rise with the explosion of Internet of Things (IoT) worldwide. With the proliferation of Big Data, it becomes a time consuming process to use various automatic approaches and techniques that are available to detect and capture malware thoroughly. Visualisation techniques can support the malware analysis process for performing the similarity comparisons and summarisation of possible malware in such Big Data contexts. In this paper, we design a novel classification of malware using visualization of similarity matrices. The prime motivation of our proposal is to detect unknown malwares that undergo the innumerable obfuscations of extended x86 IA-32 (opcodes) in order to evade from traditional detection methods. Overall, the high accuracy of classification achieved with our proposed model can be observed visually due to significant dissimilarity of the behaviour patterns exhibited by malware opcodes as compared to benign opcodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信