基于相变材料和随机计算的光子卷积引擎

Raphael Cardoso, Clément Zrounba, M.F. Abdalla, Paul Jiménez, Mauricio Gomes de Queiroz, Benoît Charbonnier, Fabio Pavanello, Ian O’Connor, S. L. Beux
{"title":"基于相变材料和随机计算的光子卷积引擎","authors":"Raphael Cardoso, Clément Zrounba, M.F. Abdalla, Paul Jiménez, Mauricio Gomes de Queiroz, Benoît Charbonnier, Fabio Pavanello, Ian O’Connor, S. L. Beux","doi":"10.1109/ISVLSI59464.2023.10238608","DOIUrl":null,"url":null,"abstract":"The last wave of AI developments sparked a global surge in computing resources allocated to neural network models. Even though such models solve complex problems, their mathematical foundations are simple, with the multiply-accumulate (MAC) operation standing out as one of the most important. However, improvements in traditional CMOS technologies fail to match the ever-increasing performance requirements of AI applications, therefore new technologies, as well as disruptive computing architectures must be explored. In this paper, we propose a novel in-memory implementation of a MAC operator based on stochastic computing and optical phase-change memories (oPCMs), leveraging their proven non-volatility and multi-level capabilities to achieve convolution. We show that resorting to the stochastic computing paradigm allows one to exploit the dynamic mechanisms of oPCMs to naturally compute and store MAC results with less noise sensitivity. Under similar conditions, we demonstrate an improvement of up to $64\\times$ and $10\\times$ in the applications that we evaluated.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic Convolution Engine Based on Phase-Change Materials and Stochastic Computing\",\"authors\":\"Raphael Cardoso, Clément Zrounba, M.F. Abdalla, Paul Jiménez, Mauricio Gomes de Queiroz, Benoît Charbonnier, Fabio Pavanello, Ian O’Connor, S. L. Beux\",\"doi\":\"10.1109/ISVLSI59464.2023.10238608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last wave of AI developments sparked a global surge in computing resources allocated to neural network models. Even though such models solve complex problems, their mathematical foundations are simple, with the multiply-accumulate (MAC) operation standing out as one of the most important. However, improvements in traditional CMOS technologies fail to match the ever-increasing performance requirements of AI applications, therefore new technologies, as well as disruptive computing architectures must be explored. In this paper, we propose a novel in-memory implementation of a MAC operator based on stochastic computing and optical phase-change memories (oPCMs), leveraging their proven non-volatility and multi-level capabilities to achieve convolution. We show that resorting to the stochastic computing paradigm allows one to exploit the dynamic mechanisms of oPCMs to naturally compute and store MAC results with less noise sensitivity. Under similar conditions, we demonstrate an improvement of up to $64\\\\times$ and $10\\\\times$ in the applications that we evaluated.\",\"PeriodicalId\":199371,\"journal\":{\"name\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI59464.2023.10238608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上一波人工智能发展浪潮引发了分配给神经网络模型的全球计算资源激增。尽管这些模型可以解决复杂的问题,但它们的数学基础很简单,其中最重要的是乘法累加(MAC)运算。然而,传统CMOS技术的改进无法满足人工智能应用日益增长的性能要求,因此必须探索新技术以及颠覆性计算架构。在本文中,我们提出了一种基于随机计算和光相变存储器(oPCMs)的MAC算子的内存实现,利用其已证明的非易失性和多层次能力来实现卷积。我们表明,借助于随机计算范式,可以利用opcm的动态机制,以更低的噪声灵敏度自然地计算和存储MAC结果。在类似的条件下,我们在我们评估的应用中证明了高达64\times$和10\times$的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photonic Convolution Engine Based on Phase-Change Materials and Stochastic Computing
The last wave of AI developments sparked a global surge in computing resources allocated to neural network models. Even though such models solve complex problems, their mathematical foundations are simple, with the multiply-accumulate (MAC) operation standing out as one of the most important. However, improvements in traditional CMOS technologies fail to match the ever-increasing performance requirements of AI applications, therefore new technologies, as well as disruptive computing architectures must be explored. In this paper, we propose a novel in-memory implementation of a MAC operator based on stochastic computing and optical phase-change memories (oPCMs), leveraging their proven non-volatility and multi-level capabilities to achieve convolution. We show that resorting to the stochastic computing paradigm allows one to exploit the dynamic mechanisms of oPCMs to naturally compute and store MAC results with less noise sensitivity. Under similar conditions, we demonstrate an improvement of up to $64\times$ and $10\times$ in the applications that we evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信