Vinh Nguyen Thanh, Tran Quoc Tuan, Nguyen Van Cuong, Cao Xuan Truong, Nguyen Van Quy
{"title":"人工神经网络与γ-Fe2O3纳米粒子包覆QCM传感器在SO2气敏特性估计中的应用","authors":"Vinh Nguyen Thanh, Tran Quoc Tuan, Nguyen Van Cuong, Cao Xuan Truong, Nguyen Van Quy","doi":"10.58845/jstt.utt.2022.en59","DOIUrl":null,"url":null,"abstract":"γ-Fe2O3 nanoparticles (NPs) were synthesized by co-precipitation method and a following annealing treatment at 200 °C in ambient air for 6 hours. A mass-type sensor was prepared by coating γ-Fe2O3 NPs on the active electrode of quartz crystal microbalance (QCM). The obtained results of the γ-Fe2O3 NPs based QCM sensor indicate the high response and good repeatability toward SO2 gas in the range of 2.5 – 20 ppm at room temperature. Moreover, the frequency shift (DF) and change in mass of SO2 adsorption per unit area (Dm) of the γ-Fe2O3 NPs coated QCM sensor have a relationship with the mass density of γ-Fe2O3 NPs and SO2 concentrations. The artificial neural network (ANN) model using Levenberg-Marquardt optimization was used to handle the DF and Dm of the γ-Fe2O3 NPs coated QCM sensor. The results of the model validation proved to be a reliable way between the experiment and prediction values.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of an artificial neural network and QCM sensor coated with γ-Fe2O3 nanoparticles for estimation of SO2 gas sensing characteristics\",\"authors\":\"Vinh Nguyen Thanh, Tran Quoc Tuan, Nguyen Van Cuong, Cao Xuan Truong, Nguyen Van Quy\",\"doi\":\"10.58845/jstt.utt.2022.en59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"γ-Fe2O3 nanoparticles (NPs) were synthesized by co-precipitation method and a following annealing treatment at 200 °C in ambient air for 6 hours. A mass-type sensor was prepared by coating γ-Fe2O3 NPs on the active electrode of quartz crystal microbalance (QCM). The obtained results of the γ-Fe2O3 NPs based QCM sensor indicate the high response and good repeatability toward SO2 gas in the range of 2.5 – 20 ppm at room temperature. Moreover, the frequency shift (DF) and change in mass of SO2 adsorption per unit area (Dm) of the γ-Fe2O3 NPs coated QCM sensor have a relationship with the mass density of γ-Fe2O3 NPs and SO2 concentrations. The artificial neural network (ANN) model using Levenberg-Marquardt optimization was used to handle the DF and Dm of the γ-Fe2O3 NPs coated QCM sensor. The results of the model validation proved to be a reliable way between the experiment and prediction values.\",\"PeriodicalId\":117856,\"journal\":{\"name\":\"Journal of Science and Transport Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Transport Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58845/jstt.utt.2022.en59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2022.en59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of an artificial neural network and QCM sensor coated with γ-Fe2O3 nanoparticles for estimation of SO2 gas sensing characteristics
γ-Fe2O3 nanoparticles (NPs) were synthesized by co-precipitation method and a following annealing treatment at 200 °C in ambient air for 6 hours. A mass-type sensor was prepared by coating γ-Fe2O3 NPs on the active electrode of quartz crystal microbalance (QCM). The obtained results of the γ-Fe2O3 NPs based QCM sensor indicate the high response and good repeatability toward SO2 gas in the range of 2.5 – 20 ppm at room temperature. Moreover, the frequency shift (DF) and change in mass of SO2 adsorption per unit area (Dm) of the γ-Fe2O3 NPs coated QCM sensor have a relationship with the mass density of γ-Fe2O3 NPs and SO2 concentrations. The artificial neural network (ANN) model using Levenberg-Marquardt optimization was used to handle the DF and Dm of the γ-Fe2O3 NPs coated QCM sensor. The results of the model validation proved to be a reliable way between the experiment and prediction values.