通过复合深度学习利用区间模糊逻辑系统捕捉不确定性

Aykut Beke, T. Kumbasar
{"title":"通过复合深度学习利用区间模糊逻辑系统捕捉不确定性","authors":"Aykut Beke, T. Kumbasar","doi":"10.1109/FUZZ45933.2021.9494584","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a learning approach for interval Fuzzy Logic Systems (FLSs) to end up with models that are capable to cover an expected amount of uncertainty with a high accuracy by exploiting a composite learning method with quantile regression. Within this paper, we construct two interval FLSs that have a different representation of uncertainty. One of them models the uncertainty in its consequents while the other one within its antecedents that are defined with interval type-2 Fuzzy Sets (FSs). The learning approach uses a multi-objective composite loss that is formed by the mean square error for accuracy purposes along with tilted loss for enforcing the bounds of the FLSs to capture the expected amount of uncertainty. In that way, it is not only possible to learn the FLSs that represent the uncertainty within their MFs (which can be used as prediction intervals) but also to improve the regression performance since the composite loss provides a more complete representation of the data. We present the proposed learning approach alongside parameterization tricks so that they can be trained within the frameworks of deep learning while not violating the definitions of FSs. We present comparative results on benchmark datasets that have different characteristics.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"0 550 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Capturing Uncertainty with Interval Fuzzy Logic Systems through Composite Deep Learning\",\"authors\":\"Aykut Beke, T. Kumbasar\",\"doi\":\"10.1109/FUZZ45933.2021.9494584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a learning approach for interval Fuzzy Logic Systems (FLSs) to end up with models that are capable to cover an expected amount of uncertainty with a high accuracy by exploiting a composite learning method with quantile regression. Within this paper, we construct two interval FLSs that have a different representation of uncertainty. One of them models the uncertainty in its consequents while the other one within its antecedents that are defined with interval type-2 Fuzzy Sets (FSs). The learning approach uses a multi-objective composite loss that is formed by the mean square error for accuracy purposes along with tilted loss for enforcing the bounds of the FLSs to capture the expected amount of uncertainty. In that way, it is not only possible to learn the FLSs that represent the uncertainty within their MFs (which can be used as prediction intervals) but also to improve the regression performance since the composite loss provides a more complete representation of the data. We present the proposed learning approach alongside parameterization tricks so that they can be trained within the frameworks of deep learning while not violating the definitions of FSs. We present comparative results on benchmark datasets that have different characteristics.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"0 550 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种区间模糊逻辑系统(FLS)的学习方法,通过利用量子回归的复合学习方法,最终得到能够高精度覆盖预期不确定性的模型。在本文中,我们构建了两个具有不同不确定性表示的区间 FLS。其中一个在其结果中建立不确定性模型,而另一个则在其前因中建立不确定性模型,这些前因都是用区间 2 型模糊集(FS)定义的。该学习方法使用多目标综合损失,该损失由用于准确性的均方误差和用于强制执行 FLSs 边界的倾斜损失组成,以捕捉预期的不确定性量。通过这种方法,不仅可以学习代表其中频内不确定性的 FLS(可用作预测区间),还能提高回归性能,因为复合损失提供了更完整的数据表示。我们介绍了所提出的学习方法以及参数化技巧,这样就可以在深度学习框架内对它们进行训练,同时又不违反 FSs 的定义。我们介绍了具有不同特征的基准数据集的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing Uncertainty with Interval Fuzzy Logic Systems through Composite Deep Learning
In this paper, we propose a learning approach for interval Fuzzy Logic Systems (FLSs) to end up with models that are capable to cover an expected amount of uncertainty with a high accuracy by exploiting a composite learning method with quantile regression. Within this paper, we construct two interval FLSs that have a different representation of uncertainty. One of them models the uncertainty in its consequents while the other one within its antecedents that are defined with interval type-2 Fuzzy Sets (FSs). The learning approach uses a multi-objective composite loss that is formed by the mean square error for accuracy purposes along with tilted loss for enforcing the bounds of the FLSs to capture the expected amount of uncertainty. In that way, it is not only possible to learn the FLSs that represent the uncertainty within their MFs (which can be used as prediction intervals) but also to improve the regression performance since the composite loss provides a more complete representation of the data. We present the proposed learning approach alongside parameterization tricks so that they can be trained within the frameworks of deep learning while not violating the definitions of FSs. We present comparative results on benchmark datasets that have different characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信